微通道換熱器在家用分體空調(diào)應(yīng)用的關(guān)鍵問題研究
[Abstract]:The consumption of freon in the domestic air-conditioning industry is huge, and the alternative work of the refrigerant is arduous. The hydrocarbon refrigerant is widely used by the Chinese government as the next generation of environment-friendly refrigerant because of its good environmental protection and thermodynamic performance. However, the flammable nature of the hydrocarbon refrigerant makes it a potential safety hazard, and the charge injection quantity of the hydrocarbon refrigerant is the most effective method to improve the safety. The micro-channel heat exchanger not only can reduce the filling amount of the refrigerant, but also can improve the heat exchange performance, so that the micro-channel heat exchanger is of great concern in the domestic air-conditioning industry. However, in the practical process, the micro-channel heat exchanger also has the problems that the condensed water is not smooth, the defrosting of the air-conditioning defrosting is difficult, and the performance of the system is reduced due to the easy-to-fly ash. In this paper, the key problem of the application of micro-channel heat exchanger to the domestic air-conditioning is studied in this paper. The experimental study on the direct replacement of the tube-type heat exchanger with the micro-channel heat exchanger is carried out for the condenser with the largest potential. After a direct substitution, the system refrigerant charge was reduced by 41.5%, and the energy efficiency ratio of the system was increased by 1.8%. In order to further optimize the effect of the micro-channel heat exchanger to reduce the refrigerant charge, a micro-channel heat exchanger and an air-conditioning system model are established, and the influence of the key parameters such as the diameter of the manifold and the aperture of the flat tube on the filling volume and the performance of the system is studied. the research shows that the diameter of the current collecting pipe is reduced by 48%, the filling amount of the refrigerant in the condenser can be reduced by 36.2%, the hydraulic diameter of the hole in the flat pipe is reduced by 50% (the number of holes is increased, the same heat exchange area is ensured), and the filling amount of the refrigerant in the condenser can be reduced by 23%, And the two methods for reducing the filling amount do not cause a significant reduction in the performance of the system. Combined with the results of the theoretical analysis, a new type of heat exchanger is designed, which can effectively reduce the content of 50% by the special mode of the flat tube and the torsion connection of the collecting pipe, and the refrigerant charge of the 1.5HP air-conditioning system is further reduced by 28.3%. The amount of charge of the r290 is reduced to 190 g. Secondly, by means of image segmentation, the growth mechanism of the frost layer on the fin of the micro-channel heat exchanger and the density distribution of the frost layer are studied, and the characteristics of the three stages of the frost formation process and the growth of the frost layer are summarized. The effect of the residual water on the frosting process of the surface of the heat exchanger was studied, and the relation of the residual water quantity to the frosting time, the maximum heat transfer capacity and the wind resistance was given quantitatively. Through the research on the drainage and frosting performance of the micro-channel heat exchanger with different placing positions, the drainage capacity of the louver fin heat exchanger is effectively improved by the vertical installation of the flat pipe, the stability of the circulating frosting process is ensured, and the effective running time is increased by 32%. Aiming at the defects of the water drainage and the frosting performance of the shutter, a novel fin is developed, and the experimental research is carried out under the condition of wet working condition and frosting condition, the water drainage performance of the novel sample piece is obviously improved compared with the louver and the corrugated fin sample piece, and the heat exchange performance of the novel fin is improved by 56.7 percent under the wet working condition, The effective running time in the frosting condition is increased by 78%. 3. The long-term effect of ash deposit on the micro-channel heat exchanger was studied. The characteristics of the surface area ash nucleation and accumulation process of the micro-channel heat exchanger are studied by comparing the ash deposition process of the pipe-piece and the louver micro-channel heat exchanger, and the principle of reducing the ash deposit on the rapid nucleation area and slowing the nucleation speed is summarized. And based on the principle, a long-acting solution for blowing back the corrugated fin and the fan is proposed, the performance of the system after three months is reduced from 49.5% to 4.3%, and the formation of the ash deposit and the attenuation of the air-conditioning performance are effectively suppressed. A wind tunnel experiment table was established to study the air side heat transfer and pressure drop characteristics of the corrugated fin microchannel heat exchanger with different fin structure parameters. In this paper, the non-linear regression and the F-significance test method are used to test the corrugated fin. The obtained corrugated fin heat exchange and pressure drop correlation type can accurately predict the data above 90%, and the prediction error is within 15%. The developed corrugated fin-associated type has been applied to the product development of the air-conditioning condenser for dozens of household air-conditioners and engineering vehicles.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM925.12
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 羅國(guó)平,鄒新杰;微通道冷卻器的設(shè)計(jì)[J];兵工自動(dòng)化;2004年03期
2 康春霞,黃新波;微通道的流動(dòng)阻力分析[J];微納電子技術(shù);2004年07期
3 王浩;吳慧英;鄭平;;芯片微通道沸騰相變過程中流動(dòng)交變現(xiàn)象探析[J];工程熱物理學(xué)報(bào);2006年S2期
4 陳永平;肖春梅;施明恒;吳嘉峰;;微通道冷凝研究的進(jìn)展與展望[J];化工學(xué)報(bào);2007年09期
5 劉敏珊;王國(guó)營(yíng);董其伍;;微通道內(nèi)液體流動(dòng)和傳熱研究進(jìn)展[J];熱科學(xué)與技術(shù);2007年04期
6 甘云華;楊澤亮;;軸向?qū)釋?duì)微通道內(nèi)傳熱特性的影響[J];化工學(xué)報(bào);2008年10期
7 云和明;陳寶明;程林;;粗糙平板微通道流動(dòng)和傳熱的數(shù)值模擬[J];工程熱物理學(xué)報(bào);2009年11期
8 金文;張鴻雁;何文博;;齒形微通道內(nèi)流流場(chǎng)數(shù)值模擬及試驗(yàn)研究[J];排灌機(jī)械工程學(xué)報(bào);2011年03期
9 苗輝;黃勇;陳海剛;;隨機(jī)粗糙微通道中的流動(dòng)和傳熱特性[J];北京航空航天大學(xué)學(xué)報(bào);2011年06期
10 楊凱鈞;左春檉;丁發(fā)喜;王克軍;呂海武;曹倩倩;王吉順;;微通道散熱器長(zhǎng)直微通道的新加工工藝研究[J];吉林化工學(xué)院學(xué)報(bào);2011年09期
相關(guān)會(huì)議論文 前10條
1 史東山;李錦輝;劉趙淼;;關(guān)于微通道相關(guān)問題研究方法現(xiàn)狀分析[A];北京力學(xué)會(huì)第18屆學(xué)術(shù)年會(huì)論文集[C];2012年
2 逄燕;劉趙淼;;溫黏關(guān)系對(duì)微通道內(nèi)液體流動(dòng)和傳熱性能的影響[A];北京力學(xué)會(huì)第18屆學(xué)術(shù)年會(huì)論文集[C];2012年
3 范國(guó)軍;逄燕;劉趙淼;;微通道中液體流動(dòng)和傳熱特性的影響因素概述[A];北京力學(xué)會(huì)第18屆學(xué)術(shù)年會(huì)論文集[C];2012年
4 劉麗昆;逄燕;劉趙淼;;幾何參數(shù)對(duì)微通道液體流動(dòng)和傳熱性能影響的研究[A];北京力學(xué)會(huì)第18屆學(xué)術(shù)年會(huì)論文集[C];2012年
5 劉麗昆;劉趙淼;申峰;;幾何參數(shù)對(duì)微通道黏性耗散影響的研究[A];北京力學(xué)會(huì)第19屆學(xué)術(shù)年會(huì)論文集[C];2013年
6 肖鵬;申峰;劉趙淼;;微通道中矩形微凹槽內(nèi)流場(chǎng)的數(shù)值模擬[A];北京力學(xué)會(huì)第19屆學(xué)術(shù)年會(huì)論文集[C];2013年
7 肖鵬;申峰;劉趙淼;李易;;凹槽微通道流場(chǎng)的三維數(shù)值模擬[A];北京力學(xué)會(huì)第20屆學(xué)術(shù)年會(huì)論文集[C];2014年
8 周繼軍;劉睿;張政;廖文裕;佘漢佃;;微通道傳熱中的兩相間歇流[A];上海市制冷學(xué)會(huì)2011年學(xué)術(shù)年會(huì)論文集[C];2011年
9 夏國(guó)棟;柴磊;周明正;楊瑞波;;周期性變截面微通道內(nèi)液體流動(dòng)與傳熱的數(shù)值模擬研究[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
10 婁文忠;Herbert Reichel;;硅微通道致冷系統(tǒng)設(shè)計(jì)與仿真研究[A];科技、工程與經(jīng)濟(jì)社會(huì)協(xié)調(diào)發(fā)展——中國(guó)科協(xié)第五屆青年學(xué)術(shù)年會(huì)論文集[C];2004年
相關(guān)重要報(bào)紙文章 前2條
1 本報(bào)記者 陳杰;空調(diào)將進(jìn)入微通道時(shí)代[N];科技日?qǐng)?bào);2008年
2 張亮;美海軍成功為未來武器研制微型散熱器[N];科技日?qǐng)?bào);2005年
相關(guān)博士學(xué)位論文 前10條
1 任滔;微通道換熱器傳熱和制冷劑分配特性的數(shù)值模擬和實(shí)驗(yàn)驗(yàn)證[D];上海交通大學(xué);2014年
2 翟玉玲;復(fù)雜結(jié)構(gòu)微通道熱沉流動(dòng)可視化及傳熱過程熱力學(xué)分析[D];北京工業(yè)大學(xué);2015年
3 楊珊珊;粗糙微通道流體流動(dòng)特性的分形分析[D];華中科技大學(xué);2015年
4 伍根生;基于納米結(jié)構(gòu)的氣液相變傳熱強(qiáng)化研究[D];東南大學(xué);2015年
5 盧玉濤;微通道內(nèi)氣—液兩相分散與傳質(zhì)的研究[D];天津大學(xué);2014年
6 逄燕;彈性壁面微通道內(nèi)液滴/氣泡的生成特性研究[D];北京工業(yè)大學(xué);2016年
7 余錫孟;微通道反應(yīng)器中若干有機(jī)物液相氧化反應(yīng)研究及相關(guān)數(shù)據(jù)測(cè)定[D];浙江大學(xué);2016年
8 徐博;微通道換熱器在家用分體空調(diào)應(yīng)用的關(guān)鍵問題研究[D];上海交通大學(xué);2014年
9 趙亮;電動(dòng)效應(yīng)作用下微通道內(nèi)液體流動(dòng)特性[D];哈爾濱工業(yè)大學(xué);2009年
10 李志華;微通道流場(chǎng)混合與分離特性的研究[D];浙江大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 程天琦;新型分合式微通道混合性能的研究[D];西北大學(xué);2015年
2 李品;聚焦型微通道內(nèi)多相流動(dòng)的模擬研究[D];河北工業(yè)大學(xué);2015年
3 王穎;微通道換熱器在家用分體空調(diào)的降充注應(yīng)用研究[D];上海交通大學(xué);2015年
4 孫振國(guó);不同角度Y型匯流下蛇形微通道氣液兩相流實(shí)驗(yàn)研究[D];東北電力大學(xué);2016年
5 王茹;豎直微通道表面活性劑水溶液流動(dòng)沸騰換熱特性的數(shù)值模擬[D];江蘇大學(xué);2016年
6 曾素均;凹槽微通道中流體流動(dòng)和換熱特性的數(shù)值分析[D];昆明理工大學(xué);2016年
7 張健;微通道反應(yīng)器中環(huán)氧油酸甲酯的合成研究[D];華南理工大學(xué);2016年
8 劉偉;微通道反應(yīng)器的構(gòu)建及應(yīng)用研究[D];山東大學(xué);2016年
9 游華建;蠶絲微通道人工神經(jīng)修復(fù)大鼠坐骨神經(jīng)缺損[D];西南大學(xué);2016年
10 鄧聰;基于不同表面能微通道Al_2O_3/R141b納米制冷劑流動(dòng)沸騰傳熱及動(dòng)態(tài)特性研究[D];華南理工大學(xué);2016年
,本文編號(hào):2479405
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2479405.html