天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

基于改進(jìn)數(shù)據(jù)流和小波包分析的超短期負(fù)荷預(yù)測方法研究

發(fā)布時間:2019-02-20 20:00
【摘要】:隨著現(xiàn)代電力系統(tǒng)建設(shè)規(guī)模的不斷擴(kuò)大,全國電網(wǎng)互聯(lián)工程的逐步開展,越來越復(fù)雜的電網(wǎng)結(jié)構(gòu)和運(yùn)行方式將給電力系統(tǒng)的安全運(yùn)行和電能質(zhì)量帶來較大的威脅,向電力負(fù)荷預(yù)測的實(shí)時性和精確度提出了更大的挑戰(zhàn)。超短期負(fù)荷預(yù)測利用最新負(fù)荷信息,實(shí)時跟蹤電力系統(tǒng)負(fù)荷變化,是動態(tài)電網(wǎng)安全檢測、自動發(fā)電控制和緊急狀態(tài)處理等的基本前提和重要依據(jù)。快速、精確的預(yù)測結(jié)果能夠指導(dǎo)電力部門及時維護(hù)電網(wǎng)頻率平衡,保證電網(wǎng)運(yùn)行的安全性和經(jīng)濟(jì)性。因此研究兼顧預(yù)測實(shí)時性和準(zhǔn)確性的超短期負(fù)荷預(yù)測實(shí)用方法具有重要意義。 本文從負(fù)荷構(gòu)成的基本模型入手,研究了負(fù)荷特性及其與相關(guān)影響因素之間的關(guān)系;針對各影響因素,研究其對負(fù)荷變化的具體影響作用,結(jié)果表明:時間因素影響較大,使負(fù)荷呈現(xiàn)出明顯的周期性;天氣因素與負(fù)荷變化之間有一定的相關(guān)性;不確定性因素的影響使負(fù)荷表現(xiàn)出較強(qiáng)的波動性,其規(guī)律難以把握。根據(jù)不同的負(fù)荷變化規(guī)律,探討了相應(yīng)的預(yù)測思路和方法。 提出了基于改進(jìn)數(shù)據(jù)流在線分割的超短期負(fù)荷預(yù)測模型:利用數(shù)據(jù)流實(shí)時處理技術(shù)進(jìn)行超短期負(fù)荷預(yù)測,,其快速分段預(yù)測能力避免了重復(fù)建模,增強(qiáng)了實(shí)時性;靜態(tài)提取蘊(yùn)含天氣因素和負(fù)荷周期特性作用的短期負(fù)荷預(yù)測結(jié)果,對分割點(diǎn)進(jìn)行實(shí)時修正,有效地增加了歷史信息利用率,提高了分割點(diǎn)預(yù)測精度,同時保證了預(yù)測實(shí)時性;經(jīng)實(shí)際算例檢驗(yàn),結(jié)果表明該模型的預(yù)測準(zhǔn)確性和實(shí)時性均優(yōu)于幾種常規(guī)超短期預(yù)測算法,解決了預(yù)測精度與預(yù)測速度相互制約的矛盾,同時降低了拐點(diǎn)預(yù)測誤差,并在天氣突變時也具有穩(wěn)定的適應(yīng)性。 進(jìn)一步考慮負(fù)荷隨機(jī)波動分量的影響作用,建立基于小波包分析的超短期負(fù)荷預(yù)測方法:通過小波包分析對負(fù)荷隨機(jī)分量進(jìn)一步分解,便于深入分析隨機(jī)分量特性;對分解后的各小波包空間信號進(jìn)行單支重構(gòu),根據(jù)各組負(fù)荷子序列分量特性,分別建立預(yù)測模型,并將各子序列分量預(yù)測值相加獲得負(fù)荷預(yù)測結(jié)果。經(jīng)算例分析表明,該算法具有較高的預(yù)測精度和穩(wěn)定的預(yù)測效果。
[Abstract]:With the continuous expansion of the scale of modern power system construction and the gradual development of the national power network interconnection project, the more and more complex power network structure and operation mode will bring a great threat to the safe operation and power quality of the power system. It presents a greater challenge to the real-time and accuracy of power load forecasting. The ultra-short-term load forecasting uses the latest load information to track the load change of the power system in real time, which is the basic premise and important basis of dynamic power network safety detection, automatic generation control and emergency processing. The fast and accurate prediction results can guide the power sector to maintain the power network frequency balance in time and ensure the security and economy of the power network operation. Therefore, it is of great significance to study the practical method of super-short-term load forecasting which takes into account the real-time and accuracy of forecasting. Starting with the basic model of load composition, this paper studies the load characteristics and the relationship between load characteristics and related factors. In view of the influence factors, the concrete effect of the factors on the load change is studied. The results show that the time factor has a great influence on the load, which makes the load appear obvious periodicity, and the weather factor has certain correlation with the load change. The influence of uncertain factors makes the load exhibit strong volatility, and its law is difficult to grasp. According to the different law of load change, the corresponding forecasting ideas and methods are discussed. The ultra-short-term load forecasting model based on the improved on-line segmentation of data flow is proposed. The fast segment forecasting ability avoids repeated modeling and enhances the real-time performance of ultra-short-term load forecasting by using data stream real-time processing technology. Static extraction of short-term load forecasting results containing weather factors and load cycle characteristics can effectively increase the utilization rate of historical information and improve the accuracy of forecasting points, and ensure the real-time prediction. The results of practical examples show that the prediction accuracy and real-time performance of the model are better than those of several conventional ultra-short term prediction algorithms, and the contradiction between prediction accuracy and prediction speed is solved, and the error of inflection point prediction is reduced at the same time. It also has a stable adaptability in the event of sudden change in the weather. Considering the influence of load random fluctuation component further, an ultra-short-term load forecasting method based on wavelet packet analysis is established: the random load component is further decomposed by wavelet packet analysis, which is convenient for further analysis of stochastic component characteristics; The decomposed wavelet packet spatial signal is reconstructed by single branch. According to the characteristics of each group of load sub-sequence components, the prediction model is established, and the load forecasting results are obtained by adding the predicted values of each sub-sequence component. An example shows that the algorithm has high prediction accuracy and stable prediction effect.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM715

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 程其云,孫才新,張曉星,周nv,杜鵬;以神經(jīng)網(wǎng)絡(luò)與模糊邏輯互補(bǔ)的電力系統(tǒng)短期負(fù)荷預(yù)測模型及方法[J];電工技術(shù)學(xué)報(bào);2004年10期

2 楊爭林,宋燕敏,曹榮章,孫維真,吳勁暉;超短期負(fù)荷預(yù)測在發(fā)電市場中的應(yīng)用[J];電力系統(tǒng)自動化;2000年11期

3 丁恰,盧建剛,錢玉妹,張劍,廖懷慶;一種實(shí)用的超短期負(fù)荷預(yù)測曲線外推方法[J];電力系統(tǒng)自動化;2004年16期

4 路軼;王民昆;;基于短期負(fù)荷預(yù)測的超短期負(fù)荷預(yù)測曲線外推法[J];電力系統(tǒng)自動化;2006年16期

5 張宜陽;盧繼平;孟洋洋;嚴(yán)歡;李輝;;基于經(jīng)驗(yàn)?zāi)J椒纸夂突煦缦嗫臻g重構(gòu)的風(fēng)電功率短期預(yù)測[J];電力系統(tǒng)自動化;2012年05期

6 何述東,瞿坦,黃心漢;電力負(fù)荷短期預(yù)測的改進(jìn)神經(jīng)網(wǎng)絡(luò)方法[J];電力系統(tǒng)自動化;1997年11期

7 鄧佑滿,王世纓,張伯明;電力系統(tǒng)超短期負(fù)荷預(yù)報(bào)[J];電力系統(tǒng)及其自動化學(xué)報(bào);1992年01期

8 朱晟,蔣傳文,侯志儉;基于氣象負(fù)荷因子的Elman神經(jīng)網(wǎng)絡(luò)短期負(fù)荷預(yù)測[J];電力系統(tǒng)及其自動化學(xué)報(bào);2005年01期

9 趙成旺;顧幸生;嚴(yán)軍;;負(fù)荷求導(dǎo)法在超短期負(fù)荷預(yù)測中的應(yīng)用[J];電力系統(tǒng)及其自動化學(xué)報(bào);2006年05期

10 羅滇生;李偉偉;何洪英;;基于局部形相似的超短期負(fù)荷預(yù)測方法[J];電力系統(tǒng)及其自動化學(xué)報(bào);2008年01期



本文編號:2427209

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2427209.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c2f21***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com