直驅(qū)式電液伺服系統(tǒng)低速控制研究
[Abstract]:Direct drive electro-hydraulic servo system is a new type of electro-hydraulic servo system. In a new type of direct-drive electro-hydraulic servo system, the motor is used as the energy element of the system to drive the bidirectional quantitative pump rotation and drive the load movement. As the control element of the system, the speed and direction of rotation of the bidirectional quantitative pump are controlled by controlling the speed and the direction of rotation of the motor to control the velocity and circulation direction of the hydraulic oil of the system, and then to control the movement of the load. The system has many advantages, such as small volume, low energy consumption, low noise, high efficiency, flexible control and so on. With the continuous application of the system, how to improve the performance of the system at low speed has become an important research direction of the electro-hydraulic servo system. In a new type of direct-drive electro-hydraulic servo system, it is very important to study the influence of the low speed characteristic factors on the system and the compensation method for various factors. In this paper, the equation of motion of AC asynchronous motor and the equation of motion of hydraulic power mechanism of direct electro-hydraulic servo system are established, and the transfer functions of AC asynchronous motor and hydraulic power mechanism are obtained respectively. The transfer function of direct-drive electro-hydraulic servo system is obtained. The simulation model of direct torque control asynchronous motor is established based on Simulink software platform. At the same time, the simulation model of hydraulic power mechanism based on AMEsim software platform is established, and the joint simulation model of direct-drive electro-hydraulic servo system is established by combining the two parts. The typical input simulation of direct-drive electro-hydraulic servo system in ideal state is carried out. The response curve of the system to typical input in ideal state is obtained and the stability of the system is verified. In this paper, the factors that affect the low speed performance of the system, such as friction disturbance moment, gear pump volume loss, gear pump mechanical loss and torque ripple under the condition of motor low speed rotation, are analyzed, and the mathematical models are established respectively. The LuGre friction model is selected to establish the simulation model of friction disturbance moment, and the simulation model of gear pump volume loss is established, which is mainly based on the leakage of the end clearance of gear pump and the leakage of radial clearance of gear pump. The mechanical loss simulation model of gear pump is established, which is based on the viscous friction loss between the top surface of gear pump tooth and liquid. Each factor is injected into the ideal simulation model of direct-drive electro-hydraulic servo system, and the influence of each factor on direct-drive electro-hydraulic servo system is observed and analyzed. In this paper, by analyzing the influence of various factors on the direct-drive electro-hydraulic servo system, the high gain PID controller and the backstepping integral adaptive controller are selected to compensate the friction torque respectively. The mathematical models of high gain PID controller and backstepping integral adaptive controller are established, and the simulation models of high gain PID controller and backstepping integral adaptive controller are established based on the above models. It is injected into the simulation model of direct-drive electro-hydraulic servo system with friction disturbance torque, and the simulation model of direct-drive electro-hydraulic servo system with friction disturbance moment is established. Through the comparison and simulation of high gain PID controller compensation and backstepping integral adaptive controller compensation, it is proved that the backstepping integral adaptive controller is more effective to compensate friction disturbance torque, and the compensation effect meets the requirements. Aiming at the problem of gear pump volume loss, the physical oil filling device is designed according to the characteristics of gear pump volume loss, and the integrated valve block is designed for oil filling device and hydraulic lock valve. The research content of low speed control of direct drive electro-hydraulic servo system is completed.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM921.541
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊存智;劉文藝;;電液比例伺服控制容積調(diào)速系統(tǒng)仿真研究[J];機(jī)床與液壓;2012年13期
2 周金柱;段寶巖;黃進(jìn);;LuGre摩擦模型對(duì)伺服系統(tǒng)的影響與補(bǔ)償[J];控制理論與應(yīng)用;2008年06期
3 陳英;荊寶德;王義強(qiáng);;外嚙合齒輪泵內(nèi)泄漏理論模型的建立及參數(shù)優(yōu)化[J];機(jī)床與液壓;2007年10期
4 陳英;荊寶德;王義強(qiáng);;外嚙合齒輪泵的間隙優(yōu)化[J];機(jī)床與液壓;2007年09期
5 劉海榮;劉金琨;;Lugre摩擦模型的模糊神經(jīng)網(wǎng)絡(luò)辨識(shí)仿真研究[J];計(jì)算機(jī)仿真;2007年01期
6 徐繩武;從節(jié)能看液壓傳動(dòng)控制系統(tǒng)發(fā)展的三個(gè)階段[J];液壓氣動(dòng)與密封;2005年05期
7 姜繼海,涂婉麗,曹健;直驅(qū)式容積控制電液伺服系統(tǒng)動(dòng)態(tài)性能研究[J];液壓與氣動(dòng);2005年08期
8 姜繼海,蘇文海,張洪波,劉慶和;直驅(qū)式容積控制電液伺服系統(tǒng)及其在船舶舵機(jī)上的應(yīng)用[J];中國造船;2004年04期
9 吳秋生;交流傳動(dòng)的應(yīng)用與展望[J];自動(dòng)化博覽;2004年02期
10 姜繼海,蘇文海,劉慶和;直驅(qū)式容積控制電液伺服系統(tǒng)[J];軍民兩用技術(shù)與產(chǎn)品;2003年09期
相關(guān)博士學(xué)位論文 前3條
1 鄭洪波;伺服直驅(qū)泵控液壓系統(tǒng)及其節(jié)能機(jī)理研究[D];廣東工業(yè)大學(xué);2012年
2 蘇文海;直驅(qū)式電液伺服轉(zhuǎn)葉舵機(jī)關(guān)鍵技術(shù)及其控制系統(tǒng)研究[D];哈爾濱工業(yè)大學(xué);2009年
3 李強(qiáng);并聯(lián)電液伺服六自由度平臺(tái)系統(tǒng)低速運(yùn)動(dòng)研究[D];浙江大學(xué);2008年
相關(guān)碩士學(xué)位論文 前7條
1 韓洪祥;船舶直驅(qū)式容積控制液壓舵機(jī)系統(tǒng)的分析與設(shè)計(jì)[D];哈爾濱工程大學(xué);2010年
2 趙朝星;異步電動(dòng)機(jī)直接轉(zhuǎn)矩控制系統(tǒng)及性能改善研究[D];中南大學(xué);2008年
3 張丹;含摩擦環(huán)節(jié)伺服系統(tǒng)的補(bǔ)償控制[D];西安電子科技大學(xué);2008年
4 劉強(qiáng);混合動(dòng)力汽車感應(yīng)電動(dòng)機(jī)模糊直接轉(zhuǎn)矩控制系統(tǒng)的研究[D];沈陽工業(yè)大學(xué);2008年
5 馬艷玲;含齒隙環(huán)節(jié)伺服系統(tǒng)的補(bǔ)償控制[D];西安電子科技大學(xué);2008年
6 楊興武;異步電動(dòng)機(jī)直接轉(zhuǎn)矩調(diào)速系統(tǒng)的設(shè)計(jì)與仿真研究[D];貴州大學(xué);2007年
7 劉洪玉;轉(zhuǎn)臺(tái)伺服系統(tǒng)低速性能分析與摩擦補(bǔ)償研究[D];哈爾濱工業(yè)大學(xué);2006年
,本文編號(hào):2411932
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2411932.html