憶阻器單元電學(xué)特性計(jì)算模擬研究
[Abstract]:At present, when the COMS device faces the size limitation of integrated technology, the memory device as a new type of nano-level memory device has attracted many scholars' attention. Low power consumption, high speed, high integration, and information storage and computing functions of the resistor, for information storage and ultra-high performance computing has brought unprecedented opportunities. As a leader in the next generation of non-volatile memory, it is expected to replace the current mainstream flash memory devices. The material related physical mechanism of the resistor is very different, the mechanism of the memory is not clear, and the performance of the memory is short of effective control methods. These reasons limit the performance improvement and the practical process of the resistive device. Although a large number of experiments have been carried out to study the memory characteristics of the device, and a certain theoretical model has been given, the internal electronic transport characterization of the device is scarce at nanometer scale. So far, there is still not a clear understanding of its specific micro-process, and there are still disputes in many places. Therefore, from the point of view of theoretical calculation and simulation, it is still the focus of current research to study the basic electrical characteristics of the resistive device and to find out the resistive mechanism of the resistive device. The simulation study of electrical characteristics of memory units will lay a theoretical foundation for the study of materials and the enhancement of memory characteristics. First-principles calculation method has been widely used in the field of material research. It can study the physical properties of materials from the microscopic level and, more importantly, it is an effective method to predict the electrical properties of materials. This method can simulate and calculate the structure, defect and doping characteristics of nanoscale devices, and analyze the simulation results from the electronic level, and predict the electrical properties of nanodevices by using the calculated results. Therefore, it is an ideal choice to study the electrical characteristics of the resistive unit by first principle calculation and to analyze the mechanism of the resistor. In this paper, the resistance mechanism of the memory element material is inferred in detail, and it is suggested that the migration of the charged vacancy defect with the applied electric field is the main cause of the resistance behavior. The model of doped vacancy defect of the memory unit was established by using the calculation software Atomistix Tool Kit. Based on the physical model analysis, the vacancy defect location in the functional layer of the memory cell at different voltages is predicted, and a series of two-electrode single-component models following the boundary migration model are established. Through the calculation and analysis of the DC I-V characteristics of the device, the resistive behavior of the device is explained reasonably. The results show that the boundary migration does change the resistance of the device. It provides a theoretical reference for future experiments and fabrication, and also provides a theoretical basis for the analysis of the mechanism of the device.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TM501
【相似文獻(xiàn)】
相關(guān)期刊論文 前6條
1 李秀燕,張世表,潘士宏,李麓維;CoSi_2薄膜電學(xué)性質(zhì)研究[J];太原理工大學(xué)學(xué)報(bào);1999年02期
2 董亮;王豫;李德柱;李統(tǒng)業(yè);嚴(yán)仲明;;Ce摻雜的WO_3薄膜的電學(xué)性質(zhì)[J];西南交通大學(xué)學(xué)報(bào);2009年06期
3 吳興才,錢(qián)逸泰,陳祖耀;新相LaBa_2Cu_2MO_7(M=Ga,Co)合成及其電學(xué)特征[J];化學(xué)研究與應(yīng)用;1994年04期
4 姜平;司道偉;朱暉文;李培剛;王順利;崔燦;唐為華;;(BiFeO_3)_(25)/(La_(0.7)Sr_(0.3)MnO_3)_(25)多層膜的光學(xué)和電學(xué)性質(zhì)[J];物理學(xué)報(bào);2011年11期
5 彭英才;康建波;馬蕾;張雷;王俠;范志東;;摻硼納米晶粒多晶Si薄膜的結(jié)構(gòu)特征與電學(xué)特性[J];人工晶體學(xué)報(bào);2008年02期
6 ;[J];;年期
相關(guān)會(huì)議論文 前5條
1 孟健;車(chē)平;馮靜;王靜平;呂敏峰;劉見(jiàn)芬;武志堅(jiān);曹學(xué)強(qiáng);;晶體結(jié)構(gòu)對(duì)化合物電學(xué)性質(zhì)的影響[A];第五屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅲ[C];2004年
2 孟建;任玉芳;潘亞嵐;;摻雜的La_2 NiO_4中價(jià)態(tài)與電學(xué)性質(zhì)的關(guān)系[A];首屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];1992年
3 王曉姹;吳堅(jiān)青;李志青;吳萍;姜恩永;白海力;;非晶CN_x薄膜的光學(xué)性質(zhì)和電學(xué)性質(zhì)[A];中國(guó)真空學(xué)會(huì)2006年學(xué)術(shù)會(huì)議論文摘要集[C];2006年
4 黃華;陳槐卿;袁支潤(rùn);;血液電頻譜特性的測(cè)量[A];中國(guó)生物醫(yī)學(xué)工程學(xué)會(huì)第六次會(huì)員代表大會(huì)暨學(xué)術(shù)會(huì)議論文摘要匯編[C];2004年
5 戚桂村;蔣燁平;楊延蓮;裘曉輝;王琛;;靜電力顯微鏡測(cè)量材料納米微區(qū)電學(xué)性質(zhì)的研究[A];中國(guó)化學(xué)會(huì)第十二屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2009年
相關(guān)博士學(xué)位論文 前1條
1 李滾;生物組織電學(xué)特性及其在電磁場(chǎng)曝露后的變化研究[D];電子科技大學(xué);2012年
相關(guān)碩士學(xué)位論文 前3條
1 謝松;憶阻器單元電學(xué)特性計(jì)算模擬研究[D];華中科技大學(xué);2015年
2 周曦;六棱管狀ZnO薄膜的電學(xué)特性研究[D];電子科技大學(xué);2007年
3 劉金浩;堿土金屬及Mn、Cr摻雜WO_3功能陶瓷的制備條件和電學(xué)性質(zhì)[D];華中科技大學(xué);2006年
,本文編號(hào):2401202
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2401202.html