基于連云港市的電力系統(tǒng)短期負荷預(yù)測研究
[Abstract]:Load forecasting is one of the most important tasks in the power enterprise such as dispatching, power consumption, planning, planning and so on. The level of power load forecasting is also an important symbol to measure the development of modern electric power. Improving the load forecasting level of power system is beneficial to the management of planned power consumption, saving primary energy and reducing the cost of power generation, and improving the economic and social benefits of the power system. Based on the actual load situation of Lianyungang City, the paper first makes a detailed and orderly analysis of the load forecasting factors, such as historical load data, temperature, Weather conditions, etc.-in models that take into account load forecasting. In order to improve the prediction accuracy, a lot of preprocessing is done to the load data and other samples to make the data smooth and easy to be identified by the model. Then it introduces the structure and principle of error back-propagation algorithm, that is, BP algorithm. The BP algorithm is simple, efficient and feasible for load forecasting. However, because of its long convergence time and easy to fall into local minimum point, Therefore, a new optimization algorithm based on particle swarm optimization (PSO) algorithm for BP neural network is proposed. The algorithm can optimize the weights and thresholds in the network structure, and train the prediction error in the direction of decreasing the prediction error in the case of continuous iteration. Therefore, the accuracy of forecasting results has been improved to a large extent and the basic requirements of load forecasting have been met.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM715
【相似文獻】
相關(guān)期刊論文 前10條
1 鐘慶,吳捷,鐘丹虹;基于系統(tǒng)論的負荷預(yù)測集成化方法[J];電力自動化設(shè)備;2002年10期
2 張伏生,劉芳,趙文彬,寇強,劉沛津,曹正建;基于Internet/Intranet的負荷預(yù)測系統(tǒng)方案[J];電力系統(tǒng)自動化;2003年10期
3 康重慶;牟濤;夏清;;電力系統(tǒng)多級負荷預(yù)測及其協(xié)調(diào)問題 (一)研究框架[J];電力系統(tǒng)自動化;2008年07期
4 李小銳;黎燦兵;袁彥;;基于下級負荷預(yù)測的短期負荷預(yù)測新算法[J];江西電力職業(yè)技術(shù)學(xué)院學(xué)報;2008年02期
5 李新煒;王子琦;方鳴;周鵬;王啟明;李同;鞠平;;基于分區(qū)逐時氣象信息的全網(wǎng)負荷預(yù)測研究[J];電力系統(tǒng)保護與控制;2009年03期
6 康重慶;趙燃;陳新宇;楊興宇;曹欣;劉梅;;多級負荷預(yù)測的基礎(chǔ)問題分析[J];電力系統(tǒng)保護與控制;2009年09期
7 任峰;丁超;;市場環(huán)境下負荷預(yù)測誤差風險管理研究[J];現(xiàn)代電力;2009年03期
8 羅鳳章;王成山;肖峻;侯磊;王建民;李亦農(nóng);陳春琴;王賽一;;計及氣溫因素的年度負荷預(yù)測修正方法[J];電力系統(tǒng)及其自動化學(xué)報;2009年03期
9 楊凱;;如何提高負荷預(yù)測的準確率[J];大眾用電;2009年10期
10 李q,
本文編號:2401094
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2401094.html