用于LED道路照明的漸變菲涅爾透鏡設(shè)計(jì)
[Abstract]:LED as a new lighting source, because it will not produce pollution in the production process, the finished product is green and environmental protection, the power consumption is far lower than the traditional high-pressure sodium lamp, and the service life is long, the efficiency of electro-optic conversion is high. More and more countries begin to pay attention to its development prospects in the field of lighting. In the lighting industry, the replacement of traditional lamps by LED has become an inevitable trend. As an important part of urbanization construction, good night road lighting can also reduce the probability of criminal activities and beautify the city night scene. When LED is used in road lighting, because its inherent light intensity distribution curve can not directly meet the requirements of road lighting, it is necessary to transform the original light intensity distribution curve through quadratic optical design to form the required light distribution curve. How to maximize the light efficiency of lamps and choose a suitable light intensity distribution form, that is, the secondary optical design of LED, has become an important research topic of road lighting. At present, the LED lens used for road lighting at home and abroad mainly adopts the structural form of free-form curved lens, which can be divided into two types: "peanut shell" lens and TIR (total internal reflection) lens. However, these two kinds of lenses have the problem that the thickness of the two lenses is large, which leads to poor heat dissipation, and this shortcoming can not be overcome because of the structural characteristics of the traditional lenses. Compared with the traditional lens, Fresnel lens has the advantages of thin thickness, small weight and high transmittance, but because it retains the curvature radius of the original lens, it can basically keep the original light path unchanged. This paper is based on the design of the gradual Fresnel lens used for LED road lighting. The main contents of this paper include the following aspects: 1) introduce the advantages of LED, the classification method and several design methods of freeform curved lens, and clarify the research content of the subject. The light distribution requirements of Urban Road Lighting Design Standard (CJJ45-2006) are studied. On the basis of introducing the theory of non-imaging optics, this paper analyzes the related concepts of illumination, the design method of free-form surface optical device and the design flow chart of street lamp lens (.2) to determine the radiation characteristics of the LED light source used and the illumination requirements of the illumination surface of the target. According to the law of conservation of energy, the light source and the illumination surface of the target are divided into uniform meshes. Based on the theory of edge light and Snell's theorem, the partial differential equations reflecting the surface form of free surface are listed. The free-form surface lens model was constructed by Matlab. The surface data were imported into Solidworks to fit the lens entity through the steps of curve lofting, surface suture and mirror image. In the process of research, a new fast modeling method is proposed. This method is in Tracepro, using Scheme language directly and quickly modeling. The advantages and disadvantages of the two modeling methods are analyzed and compared. (4) A gradual Fresnel lens is constructed. Ten free-form surface lenses with the same luminous effect but different size are modeled, and then cut by superposition to make the outer surface of the lens appear Fresnel surface. Thus, the lens volume is reduced and the heat dissipation performance is increased. The simulation results of the optical design software Lighttools show that the designed Fresnel lens meets the road lighting requirements, has good illumination uniformity (the illumination uniformity reaches 68%), and the thickness of the lens is obviously thinned. The problem of heat dissipation of traditional freeform street lamp lens is solved, and the transmission efficiency and service life of LED are improved. The illumination uniformity (illumination uniformity is up to 95%) is further improved by reasonable arrangement of Fresnel lens.
【學(xué)位授予單位】:中國(guó)科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TM923.34;TU113.666
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋錫金;俞福民;;大孔徑細(xì)紋菲涅爾透鏡的計(jì)算[J];應(yīng)用光學(xué);1984年06期
2 王寶;;菲涅爾透鏡的線彗差及其在一步彩虹全息中的應(yīng)用[J];應(yīng)用光學(xué);1988年01期
3 郭孝武;菲涅爾透鏡統(tǒng)一設(shè)計(jì)方法[J];太陽(yáng)能學(xué)報(bào);1991年04期
4 王永仲;;菲涅爾透鏡光路的解析計(jì)算[J];光學(xué)儀器;1992年04期
5 姚敘紅;朱林泉;薛忠晉;邢進(jìn);楊敏;;菲涅爾透鏡提高太陽(yáng)能利用率的研究[J];紅外;2009年03期
6 關(guān)佳亮;陳志德;曹成國(guó);汪文昌;;大直徑菲涅爾透鏡模具加工發(fā)展現(xiàn)狀及展望[J];制造技術(shù)與機(jī)床;2012年03期
7 關(guān)佳亮;朱莉莉;曹成國(guó);張孝輝;;大直徑菲涅爾透鏡模具加工工藝的模擬實(shí)驗(yàn)研究[J];制造技術(shù)與機(jī)床;2013年09期
8 陳紅;孫可;周澤軍;;柱面菲涅爾透鏡出光特性研究[J];企業(yè)技術(shù)開發(fā);2013年15期
9 陳志明;張麗;董前民;梁培;;菲涅爾透鏡聚光倍率測(cè)試系統(tǒng)研究[J];傳感器與微系統(tǒng);2012年11期
10 В.Н.Бегунов;吳福田;;菲涅爾透鏡、軸向圓錐體、光學(xué)光柵[J];應(yīng)用光學(xué);1986年04期
相關(guān)重要報(bào)紙文章 前2條
1 和鵬;SuperView征服你的眼睛[N];中國(guó)計(jì)算機(jī)報(bào);2002年
2 佳;SuperView帶給LCD新“視界”[N];計(jì)算機(jī)世界;2002年
相關(guān)博士學(xué)位論文 前2條
1 韓延民;太陽(yáng)能高倍聚光能量傳輸利用理論及試驗(yàn)研究[D];上海交通大學(xué);2007年
2 胡昱;基于納米結(jié)構(gòu)的太陽(yáng)能電池的研究[D];浙江大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 海大鵬;菲涅爾透鏡的加工工藝研究[D];哈爾濱工業(yè)大學(xué);2007年
2 陳志明;菲涅爾透鏡聚光性能研究[D];中國(guó)計(jì)量學(xué)院;2013年
3 劉永強(qiáng);均勻聚光菲涅爾透鏡設(shè)計(jì)及性能研究[D];哈爾濱工業(yè)大學(xué);2012年
4 尹田田;應(yīng)用于水下光通信的菲涅爾透鏡研究[D];哈爾濱工業(yè)大學(xué);2014年
5 白紅艷;高倍聚光菲涅爾透鏡設(shè)計(jì)及光學(xué)性能研究[D];云南師范大學(xué);2014年
6 宋悅;液晶菲涅爾透鏡的制備與應(yīng)用研究[D];上海交通大學(xué);2013年
7 梁海生;用于紅外成像的菲涅爾透鏡設(shè)計(jì)與分析[D];西安工業(yè)大學(xué);2013年
8 汪小云;新型菲涅爾透鏡模板數(shù)控加工技術(shù)研究[D];蘭州理工大學(xué);2007年
9 葛成;面向菲涅爾透鏡超硬模芯的砂輪修整及磨削加工實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2014年
10 周海波;多焦點(diǎn)菲涅爾透鏡陣列的設(shè)計(jì)與性能分析[D];浙江工業(yè)大學(xué);2015年
,本文編號(hào):2256811
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2256811.html