風(fēng)力發(fā)電機齒輪箱故障診斷方法研究
[Abstract]:As an important transmission part of wind turbine, gearbox is one of the components with high failure rate in wind turbine generator, so it is very important to study the fault diagnosis method of wind turbine gearbox. This paper first introduces the development of wind power generation at home and abroad and the research status of wind turbine gearbox fault diagnosis method, and expounds the basic theory of time domain index diagnosis method. The basic principles of detrend fluctuation analysis and multifractal detrend fluctuation analysis are briefly introduced. Aiming at the randomness and subjectivity of interval length selection in the detrend fluctuation analysis method, according to the basic theory of mutual information, a symbolic analysis method is proposed to calculate mutual information. The long range correlation index of detrend volatility analysis is optimized to avoid the influence of interval length on long range correlation index and the stability of the improved algorithm is ensured. Then according to the feature of multifractal when signal fault occurs, the deviation degree of fractal graph (DGD) is obtained as the time domain index of fault identification by calculating the degree of deviation of fractal graph. The signal simulation of rolling bearing is carried out, and the improved algorithm of de-trend fluctuation analysis is applied to the simulation signal. The fractal figure and DGD characteristic factor of the simulation signal are obtained, and the normal and fault simulation signals are distinguished according to the score diagram and the DGD characteristic factor. The validity and accuracy of DGD feature factor are proved by the resolution of simulation signal. The effect of noise on DGD feature factor is verified by adding noise to the simulation signal. It is proved that the addition of noise does not affect the DGD feature factor for fault identification. Finally, the improved algorithm of detrend fluctuation analysis is applied to the actual signal, the vibration signal of the gear box and the vibration signal of the gear box of the wind turbine are analyzed, and the fractal diagram and the DGD characteristic factor are obtained, respectively. The DGD characteristic factor is compared with other time domain indexes. Through comparison, it is found that kurtosis is unstable in the process of actual fault identification, and DGD characteristic factor has good stability for wind turbine gearbox fault identification. It is proved that the DGD characteristic factor proposed in this paper is superior to the wind turbine gearbox fault identification.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 于功志;關(guān)德林;段樹林;李國賓;;基于多重分形的齒輪故障特征提取方法[J];大連海事大學(xué)學(xué)報;2009年01期
2 劉小剛;趙慧潔;李娜;;基于多重分形譜的高光譜數(shù)據(jù)特征提取[J];光學(xué)學(xué)報;2009年03期
3 周培毅;張新燕;;風(fēng)力發(fā)電機組圓柱齒輪的故障振動分析[J];華東電力;2008年06期
4 龍海輝;張佃中;;基于等概率符號分析方法計算互信息確定延遲時間[J];計算物理;2010年03期
5 陳亦望;徐鑫;傅強;;基于多個無標(biāo)度區(qū)的多重分形分析方法[J];計算物理;2010年06期
6 楊志安,王光瑞,陳式剛;用等間距分格子法計算互信息函數(shù)確定延遲時間[J];計算物理;1995年04期
7 張來斌;崔厚璽;王朝暉;段禮祥;;基于信息熵神經(jīng)網(wǎng)絡(luò)的風(fēng)力發(fā)電機故障診斷方法研究[J];機械強度;2009年01期
8 陳雪峰;李繼猛;程航;李兵;何正嘉;;風(fēng)力發(fā)電機狀態(tài)監(jiān)測和故障診斷技術(shù)的研究與進(jìn)展[J];機械工程學(xué)報;2011年09期
9 林近山;陳前;;基于非平穩(wěn)時間序列雙標(biāo)度指數(shù)特征的齒輪箱故障診斷[J];機械工程學(xué)報;2012年13期
10 樊長博;張來斌;殷樹根;陳朝暉;王朝暉;崔厚璽;;應(yīng)用倒頻譜分析法對風(fēng)力發(fā)電機組齒輪箱故障診斷[J];科學(xué)技術(shù)與工程;2006年02期
相關(guān)博士學(xué)位論文 前1條
1 周志剛;隨機風(fēng)作用下風(fēng)力發(fā)電機齒輪傳動系統(tǒng)動力學(xué)及動態(tài)可靠性研究[D];重慶大學(xué);2012年
本文編號:2251555
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2251555.html