氧化還原摻雜的聚合物:一類新穎的高容量二次電池正極材料
[Abstract]:Energy crisis and environmental pollution are serious problems facing human society nowadays. Exploring and developing advanced energy storage methods is one of the key technologies to solve energy problems. Lithium-ion batteries are considered as the most potential high-specific energy storage system because of their excellent comprehensive performance. However, the energy density of lithium-ion batteries is mainly limited at this stage. Specific capacity of cathode materials. Transition metal oxides are the main cathode materials for commercial lithium-ion batteries. Due to the limitation of inorganic rigid lattice, theoretical specific capacity is difficult to break through. It is an ideal cathode material for secondary batteries. However, due to the low utilization of active materials, the actual capacity of the polymer is far lower than the theoretical capacity. Two battery materials. The main research contents and research results are as follows:
1. Fe(CN)64-doped PPy/FC composites were synthesized by redox immobilization doping method with polypyrrole as the research model. The electrochemical properties of the composites as cathode materials for lithium-ion batteries were investigated. The results showed that the charge-discharge capacitance of Fe(CN)64-doped PPy(PPy/FC) was higher than that of undoped PPy. The specific discharge capacity of PPy/FC was 110 mAh g-1 when the current density of 400 mA g-1 was charged and discharged. The charge-discharge mechanism of the polymer composite was studied. The results showed that the charge-discharge mechanism of PPy/FC was due to the immobilization and doping of large anion Fe(CN)64-on PPy. The traditional anion doping-dehybridization process has been changed into a small cation (Li+) intercalation-dehybridization reaction, and the Fe(CN)64-/Fe(CN)63-pair also provides additional capacity for the system through its own redox reaction during charging and discharging. At the same time, the existence of Fe(CN)64-/Fe(CN)63-pair also shows the presence of PPy main chain. The activation effect.
2. In order to verify the universality of redox doping on the activation of polymer backbone chain, different dopants, different polymer backbone chains and different solution systems were used in the experiments. The electrochemical capacity of PPy-doped polymer composites was significantly improved and the electrochemical properties of the composites were good. Taking PPy/DS doped with diphenylamine sulfonate as an example, the reversible discharge capacity reached 143 mAh g-1 at the current density of 50 mA g-1, and the capacity retention rate was 87% after 100 weeks. The reversible discharge capacity of PAn/FC, PDPA/FC and PEDOT/FC composites can still reach 50 mAh g-1 when charge-discharge current density increases to 1600 mA g-1. At the same time, we doped polyaniline, Polydiphenylamine and poly (3,4-dioxyethylene thiophene) with Fe (CN) 64 - as dopant, respectively, and obtained polymer composites PAn/FC, PDPA/FC and PEDOT/FC. At last, we used PPy/FC and PPy/DS to test the charge-discharge performance of sodium ion electrolyte. As in lithium ion batteries, the doped polymer composites showed significant capacity. The discharge capacity of PPy/FC was 135 mAhg-1, and the capacity retention rate was 82% after 100 weeks of cycling. The capacitance of PPy/DS could reach 135 mAhg-1 at the current density of 50 mAg-1. Yes.
3. In view of the low doping degree of redox immobilized dopants and the limited electrochemical capacity provided by active dopants, we synthesized poly (1,5-diaminoanthraquinone) (PDAQ) with multiple redox active groups, and prepared PDAQ/C by compounding PDAQ with vapor-phase carbon fiber (VGCF) at room temperature. The experimental results show that the discharge capacity of PDAQ/C composites reaches 285mAh g-1 in the first week at the current density of 20 mA g-1, and 160 mAh g-1 after 200 cycles. When the current density is raised to 800 mA g-1, the discharge capacity can still reach 125 mAh g-1. The charge-discharge machine for PDAQ/C Composites The results show that the discharge capacity of the material mainly consists of two parts: one is doping and dehybridization of the main chain of polyaniline, the other is redox reaction of quinone group (Q).
4. For redox immobilized doping, although the electrochemical capacity of the polymer is greatly improved, there is still a gap from its potential theoretical capacity. In order to explore new methods, we synthesized a self-doped polymer-sodium Polydiphenylamine sulfonate (PDS) and realized 100% doping of the main chain of the polymer, and explored this material as the cathode material for sodium ion batteries. The experimental results show that the discharge capacity is close to the theoretical value of 99 mAhg-1 and the plateau of charge and discharge is about 3.6 V. After 50 weeks of cycling, when the current density reaches 400 mAg-1, the discharge capacity is 43 mAhg-1. Compared with ordinary conductive polymer, the self-doped polymer is rich in sodium source, which is the solution. The charge-discharge mechanism of PDS is studied and it is shown that the charge-discharge process of PDS corresponds to the intercalation and detachment of cationic Na +.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TM912;O631.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 邵學(xué)俊;;質(zhì)子酸堿與氧化還原[J];化學(xué)通報(bào);1987年11期
2 吳又先;潘淑貞;丁昌璞;;土壤中硫的氧化還原及其生態(tài)學(xué)意義[J];土壤學(xué)進(jìn)展;1993年04期
3 趙藻藩;;關(guān)于用φ-p[電偶]平衡圖處理氧化還原平衡的討論[J];化學(xué)通報(bào);1981年02期
4 蔣安仁;蔣彤;龐震;;4:2鉬、鎢過氧配合物的制備、結(jié)構(gòu)及其氧化還原分解行為[J];化學(xué)學(xué)報(bào);1989年08期
5 吳之傳,,陶庭先;實(shí)驗(yàn)室廢液中碘的回收[J];化學(xué)世界;1996年09期
6 ;氧化還原[J];環(huán)境科學(xué)叢刊;1988年02期
7 陳建如;氧化還原方程式的配平方法[J];張家口師專學(xué)報(bào);2000年01期
8 陳行琦,劉建華;鄰苯二酚型氧化還原交換樹脂[J];離子交換與吸附;1988年01期
9 Daluh Lu;許孫曲;;在氧化還原流動槽中還原銪[J];新疆有色金屬;1989年01期
10 彭汝芳,伍成德;氧化還原方程式配平的補(bǔ)充[J];綿陽經(jīng)濟(jì)技術(shù)高等?茖W(xué)校學(xué)報(bào);1995年01期
相關(guān)會議論文 前4條
1 卞永榮;顧寶華;蔣新;;天然有機(jī)質(zhì)與汞的絡(luò)合和氧化還原轉(zhuǎn)化[A];第六屆全國環(huán)境化學(xué)大會暨環(huán)境科學(xué)儀器與分析儀器展覽會摘要集[C];2011年
2 景傳勇;;砷的氧化還原轉(zhuǎn)化及吸附機(jī)理[A];第五屆全國環(huán)境化學(xué)大會摘要集[C];2009年
3 焦洪超;林海;;青貯姜苗對肉仔雞機(jī)體氧化還原平衡的影響[A];中國畜牧獸醫(yī)學(xué)會動物營養(yǎng)學(xué)分會——第九屆學(xué)術(shù)研討會論文集[C];2004年
4 張潔;龔學(xué)慶;盧冠忠;;CeO_2負(fù)載Au顆粒催化CO+NO_x氧化還原的DFT+U研究[A];第十八屆全國稀土催化學(xué)術(shù)會議論文集[C];2011年
相關(guān)重要報(bào)紙文章 前1條
1 樟樹市義成中學(xué) 丁小春;化學(xué)中氧化還原在生活中的應(yīng)用[N];宜春日報(bào);2011年
相關(guān)博士學(xué)位論文 前2條
1 周敏;氧化還原摻雜的聚合物:一類新穎的高容量二次電池正極材料[D];武漢大學(xué);2014年
2 樊冬玲;降雨對垃圾填埋場污染地下水氧化還原分帶及其污染物降解影響的研究[D];吉林大學(xué);2008年
相關(guān)碩士學(xué)位論文 前8條
1 汪明霞;Shewanella oneidensis MR-1異化還原Fe(Ⅲ)介導(dǎo)的砷氧化還原轉(zhuǎn)化研究[D];安徽農(nóng)業(yè)大學(xué);2014年
2 李海波;氧化還原介體催化強(qiáng)化生物反硝化特性及機(jī)理研究[D];河北科技大學(xué);2012年
3 曹豐龍;湖北恩施地區(qū)沉積黃鐵礦形態(tài)的氧化還原意義[D];東華理工大學(xué);2016年
4 王雷;基于金屬離子液體氧化還原對染料敏化太陽能電池的研究[D];蘇州大學(xué);2014年
5 王晶晶;酚類化合物氧化還原機(jī)理的研究[D];安徽大學(xué);2013年
6 田志國;氧化還原去除海水中重金屬離子的研究[D];天津大學(xué);2012年
7 陳素林;鋅鉻電池的研究[D];中南大學(xué);2009年
8 袁曉玲;吸附—氧化還原化學(xué)反應(yīng)墻去除水源水中POPs-BHC的效果研究[D];吉林大學(xué);2004年
本文編號:2238354
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2238354.html