有機(jī)光伏器件—高效聚合物太陽電池和近紅外光電探測器
[Abstract]:Organic photovoltaic devices have attracted much attention due to their advantages such as light weight, low cost and solution processing. However, polymer solar cells and polymer near-infrared photodetectors, which can be used for solution processing, are more efficient in energy conversion and device stability than traditional inorganic photovoltaic devices. In view of this, the main work of this paper is to optimize the preparation process of photovoltaic devices, improve the performance of polymer solar cells and near-infrared photodetectors, and explore new ways to fabricate high-performance polymer photovoltaic devices by solution processing technology. Way.
We first investigated the properties of the donor-acceptor (D-A) conjugated polymer (PBDT-DTNT) based on the electron-absorbing group of naphthalene [1,2-c:5,6-c] bis [1,2,5] thiadiazole (NBDT). The polymer PBDT-DTNT exhibited excellent performance as a donor material for solar cells due to its strong electron-absorbing ability. Different photoelectric properties. We mainly optimize the performance of solar cells based on the polymer film from the nano-size morphology. We found that the thermal annealing treatment, solvent additives and other treatment methods can improve the performance of solar cells based on the polymer and obtain higher energy conversion efficiency. Ming PBDT-DTNT is a promising electron donor material, and our results have important reference value for optimizing a series of conjugated polymers based on the electron-absorbing groups of naphthalene dithiadiazole as donor materials for solar cell devices.
On the basis of the above research, we still use PBDT-DTNT:PC71BM material system as active layer material and cross-linked conjugated polymer PFN-OX as electron extraction layer to prepare flip-chip polymer solar cells. The relationship between the thickness of active layer film and the performance of polymer solar cells is studied systematically. A series of devices with different active layer thicknesses were fabricated, and the thickness ranged from 85 nm to 1300 nm. When the active layer thickness was 280 nm, the highest energy conversion efficiency was 8.62%. When the thickness was about 1000 nm, the energy conversion efficiency was still 7.24%. We found that with the increase of the active layer thickness, the carrier mobility was still maintained. The results of grazing incidence small angle X-ray scattering (GISAXS) and grazing incidence wide angle X-ray scattering (GIWAXS) show that the increase of thickness does not change the high order of polymer chains in the blends, which means that the increase of film thickness does not affect the polymerization of holes in the blends. The transport of the main chains along the polymer skeleton is the reason why polymer solar cells based on this material system can maintain high efficiency even with such a thick film.
In the third part, based on a novel narrow band-gap conjugated polymer PTZBTTT-BDT, we fabricated polymer near-infrared photodetectors with high performance. Considering that water-soluble conjugated polymer PFN can improve the performance of polymer solar cells, especially reduce the dark current of the devices, we applied PFN to the polymerization. In the range of 400 nm to 950 nm, the detection rate is as high as 1013 cm.Hz 1/2/W. In the range of 950 nm to 1100 nm, the detection rate is higher than 1010 cm.Hz 1/2/W. We found that the negative PFN is added. Photodetectors with PFN coatings exhibit better diode characteristics. Under reverse bias, the dark current of the device is well suppressed, thus reducing the noise caused by dark current. Therefore, photodetectors with PFN coatings exhibit superior performance compared with inorganic silicon detectors.
Based on the above research work, we still use the above near infrared material PTZBTTT-BDT as the donor material of the active layer, and use the crosslinked conjugated polymer PFN-OX as the electron extraction layer to prepare flip-chip polymer near infrared photodetectors. At the same time, we use the traditional cathode modified material ZnO as the electron extraction layer to prepare the detector. It is found that the photodetector based on PFN-OX electron extraction layer has a response rate of 116 mA/W to near infrared light of 800 nm wavelength at room temperature and zero bias voltage, and the corresponding detection rate is 1.02 *1013 cm Hz 1/2/W. The flip-chip detector based on traditional electron extraction layer ZnO has a detection rate of 1.71 *1012 cm Hz 1/2/W, which is a ratio. The detectivity of the photodetectors based on the PFN-OX electron extraction layer is almost one order of magnitude smaller, which proves that the PFN-OX film has better cathodic modification effect than the ZnO film. At the same time, our experimental results show that the flip-chip photodetectors based on the PFN-OX modified ITO cathode are good flip-chip polymers. A very effective way of photodetectors.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TM914.4;TN215
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭剛,蔡小舒,虞先煌;確定激光粒度儀光電探測器的響應(yīng)系數(shù)的方法[J];儀器儀表學(xué)報(bào);1996年03期
2 嵇成新;當(dāng)前雷達(dá)及光電探測器亟待解決的問題[J];艦船科學(xué)技術(shù);2003年05期
3 高勛;董光炎;李永大;;光電探測器的激光損傷閾值的測量及測量誤差分析[J];長春理工大學(xué)學(xué)報(bào);2006年02期
4 鄧敏;彭蕓;;淺談生產(chǎn)環(huán)境對某型光電探測器外觀質(zhì)量的影響[J];硅谷;2008年02期
5 李翰山;華翔;王澤民;雷志勇;雷鳴;;陣列光電探測器在光電探測靶中的應(yīng)用研究[J];彈箭與制導(dǎo)學(xué)報(bào);2008年03期
6 郭渭榮;栗蘋;陳慧敏;賈瑞麗;;不同角度下散射太陽光對光電探測器的干擾[J];探測與控制學(xué)報(bào);2009年01期
7 費(fèi)豐;;高速光電探測器頻率響應(yīng)測試方法研究[J];宇航計(jì)測技術(shù);2010年01期
8 尹洪劍;;功率驅(qū)動型集成光電探測器結(jié)構(gòu)研究[J];硅谷;2011年17期
9 李林忠,王正民;用真空光電探測器測量軟X射線起伏波形[J];核聚變與等離子體物理;1986年01期
10 Leo Levi;祁正敏;;應(yīng)用光學(xué)——光學(xué)系統(tǒng)設(shè)計(jì)指南 第十六章 光電探測器和熱探測器(續(xù))[J];應(yīng)用光學(xué);1987年03期
相關(guān)會議論文 前10條
1 單崇新;王立昆;張吉英;申德振;范希武;;氧鋅鎂基太陽盲光電探測器[A];第十一屆全國MOCVD學(xué)術(shù)會議論文集[C];2010年
2 王曉耘;徐華盛;雷愛宏;;超快光電探測器[A];華東三省一市第三屆真空學(xué)術(shù)交流會論文集[C];2000年
3 陳風(fēng);王驥;鄭小兵;;陷阱式光電探測器的線性測量[A];第十屆全國光學(xué)測試學(xué)術(shù)討論會論文(摘要集)[C];2004年
4 費(fèi)豐;楊家桂;繆向紅;;高速光電探測器帶寬測試技術(shù)[A];第十二屆全國光學(xué)測試學(xué)術(shù)討論會論文(摘要集)[C];2008年
5 王曉耘;劉德林;;超快響應(yīng)光電探測器時間響應(yīng)特性的研究[A];第六屆華東三省一市真空學(xué)術(shù)交流會論文集[C];2009年
6 郭中原;;用于激光陀螺儀的硅光電探測器[A];第九屆全國光電技術(shù)學(xué)術(shù)交流會論文集(上冊)[C];2010年
7 林聚承;袁祥輝;;一種新型650nm的光電探測器[A];中國儀器儀表學(xué)會第六屆青年學(xué)術(shù)會議論文集[C];2004年
8 費(fèi)豐;王寧;劉濤;;高速光電探測器帶寬測試技術(shù)研究[A];第十三屆全國光學(xué)測試學(xué)術(shù)討論會論文(摘要集)[C];2010年
9 楊電;趙先明;徐紅春;;雪崩型光電探測器的自動老化測試的研究[A];第十四屆全國光學(xué)測試學(xué)術(shù)討論會論文(摘要集)[C];2012年
10 王興妍;黃輝;王琦;黃永清;任曉敏;;新型光電探測器的研究[A];第九屆全國青年通信學(xué)術(shù)會議論文集[C];2004年
相關(guān)重要報(bào)紙文章 前4條
1 記者 蘇亞兵;建國內(nèi)首個光電探測器研發(fā)平臺[N];珠海特區(qū)報(bào);2010年
2 撰稿 本報(bào)記者 張希;寧企研發(fā)光電探測器 保障嫦娥三號平安“落月”[N];南京日報(bào);2013年
3 張巍巍;IBM在芯片通信技術(shù)上取得重大突破[N];科技日報(bào);2010年
4 張巍巍;IBM芯片通信技術(shù)取得重大突破[N];中國質(zhì)量報(bào);2010年
相關(guān)博士學(xué)位論文 前10條
1 李莉;雙波段組合激光輻照光電探測器的研究[D];國防科學(xué)技術(shù)大學(xué);2010年
2 李建威;高速光電探測器頻率響應(yīng)特性測試研究[D];南開大學(xué);2010年
3 黃啟俊;MOSFET亞閾光電特性研究及其應(yīng)用系統(tǒng)[D];武漢大學(xué);2010年
4 李霞;PTCDA/p-Si光電探測器的研制與性能研究[D];蘭州大學(xué);2009年
5 傘海生;透明導(dǎo)電薄膜CdIn_2O_4的研究和高速光電探測器頻響的測量[D];蘭州大學(xué);2006年
6 魏瑩;Ge/Si異質(zhì)結(jié)及其光電探測器特性研究[D];蘭州大學(xué);2012年
7 朱會麗;分離吸收層與倍增層結(jié)構(gòu)的低壓4H-SiC雪崩光電探測器及其p型歐姆接觸的研究[D];廈門大學(xué);2007年
8 宋海蘭;低溫晶片鍵合技術(shù)及其在硅基長波長雪崩光電探測器中的應(yīng)用研究[D];北京郵電大學(xué);2011年
9 胡小文;有機(jī)光伏器件—高效聚合物太陽電池和近紅外光電探測器[D];華南理工大學(xué);2014年
10 晁軍峰;半導(dǎo)體Sn、Sb基硫?qū)倩衔锏闹苽浼捌湫阅苎芯縖D];華中科技大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 高勛;強(qiáng)激光對光電探測器的損傷研究[D];長春理工大學(xué);2004年
2 周勇;諧振腔增強(qiáng)型光電探測器的特性研究[D];電子科技大學(xué);2009年
3 賀成群;光電探測器關(guān)鍵性能參數(shù)測試研究[D];大連理工大學(xué);2009年
4 陶啟林;波長1.3μm高速光電探測器研究[D];電子科技大學(xué);2000年
5 孫丹丹;基于光電探測器的微波光子變頻技術(shù)研究[D];大連理工大學(xué);2012年
6 焦芳;小型超寬譜超快光電探測器設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2013年
7 王大鵬;低噪聲不隔直光電探測器的研制[D];北京交通大學(xué);2014年
8 范忱;光互連系統(tǒng)光電探測器的設(shè)計(jì)[D];西安電子科技大學(xué);2013年
9 曲洪豐;光電探測器特性一體化實(shí)驗(yàn)系統(tǒng)研究[D];浙江大學(xué);2006年
10 鐘行;通信用高速光電探測器芯片的研究[D];武漢郵電科學(xué)研究院;2012年
本文編號:2216514
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2216514.html