基于諧波小波和支持向量機(jī)的風(fēng)電葉片損傷識(shí)別研究
[Abstract]:Blade is one of the key components of wind turbine. Because of the huge structure, irregular shape, complicated material layer and long term working environment, the problem that needs to be solved is how to realize the blade health monitoring. At present, the commonly used monitoring method is to judge the damage condition of the blade by monitoring its mode, but the disadvantage of this method is that the sensitivity is low, and it has not been effectively solved. In order to solve this problem, the acoustic emission technique is used to detect the damage of wind turbine blades, and SVM (Support Vector Machine, support vector machine (SVM) is applied to identify the two types of damage patterns. The acoustic emission signal can be obtained by collecting and analyzing the acoustic emission signal because the blade will cause internal strain of the material when it is damaged by external force, and the acoustic emission signal source can be recognized. First, the acoustic emission sensor, signal amplifier, data acquisition card and computer are connected to build the experimental platform of acoustic emission signal acquisition, and the acoustic emission sensor is fixed on the blade with coupling agent. Then, the static single blade is loaded manually to simulate the crack propagation and edge damage of the blade, and the acoustic emission signals are collected. After collecting the signal, the harmonic wavelet packet and the db10 wavelet packet are used to decompose the acoustic emission signal into four layers and calculate the energy values of each frequency band of the signal. After normalizing the energy value, the obtained data is used as the eigenvector. The feature vector is trained and studied by SVM, and the model of blade damage identification is established. In the process of blade damage identification, the feature extraction effects of two kinds of wavelet packets are compared. The simulation results show that the method of harmonic wavelet packet and SVM can obtain good recognition effect. This method can effectively identify different types of damage, help to detect the initial damage of leaves, enable the leaves to be maintained in time, and prevent the damage from spreading further.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 肖勁松;嚴(yán)天鵬;;風(fēng)力機(jī)葉片的紅外熱成像無損檢測的數(shù)值研究[J];北京工業(yè)大學(xué)學(xué)報(bào);2006年01期
2 趙煒;李濤;;國外風(fēng)力發(fā)電機(jī)的現(xiàn)狀及前景展望[J];電力需求側(cè)管理;2009年02期
3 趙鴻漢;趙玨;鐘方國;;我國風(fēng)電市場機(jī)遇和兆瓦級(jí)玻璃鋼風(fēng)機(jī)葉片[J];電氣制造;2009年09期
4 何學(xué)文;孫林;付靜;;基于小波分析和支持向量機(jī)的旋轉(zhuǎn)機(jī)械故障診斷方法[J];中國工程機(jī)械學(xué)報(bào);2007年01期
5 楊欽慧;;風(fēng)力發(fā)電設(shè)備雷害的狀況及對(duì)策[J];華通技術(shù);2007年Z1期
6 劉紅梅;呂琛;侯文魁;王少萍;;基于支持向量機(jī)的直升機(jī)旋翼系統(tǒng)故障診斷[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年S1期
7 朱家元;陳開陶;張恒喜;;最小二乘支持向量機(jī)算法研究[J];計(jì)算機(jī)科學(xué);2003年07期
8 曲弋;陳長征;周昊;周勃;;基于聲發(fā)射和神經(jīng)網(wǎng)絡(luò)的風(fēng)機(jī)葉片裂紋識(shí)別研究[J];機(jī)械設(shè)計(jì)與制造;2012年03期
9 王冬云;張建剛;秦紅義;張文志;;應(yīng)用諧波小波包提取轉(zhuǎn)子故障特征方法[J];哈爾濱工程大學(xué)學(xué)報(bào);2012年07期
10 周偉;張洪波;馬力輝;張萬嶺;;風(fēng)電葉片復(fù)合材料結(jié)構(gòu)缺陷無損檢測研究進(jìn)展[J];塑料科技;2010年12期
本文編號(hào):2207890
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2207890.html