含風(fēng)電區(qū)域電網(wǎng)的可靠性評估模型與方法
[Abstract]:Large-scale wind power access is bound to have an impact on the security and reliability of the power grid, especially on the regional grid with weak grid structure. Therefore, it is necessary to quantitatively analyze the reliability of wind power and its impact on the power grid theoretically. According to the characteristics of a certain regional power network, especially in areas which are greatly affected by the external environment and contain a large amount of wind power, the effects of weather, environment, natural disasters and operating conditions on the outage of wind turbines, generators, transformers and transmission lines are analyzed. This paper presents a method for calculating the failure rate of components considering weather, environment and power network operating conditions, and studies the time-varying outage model of wind turbine and primary equipment of main power system. According to the operating characteristics of wind turbine, based on the analytic method of Markov chain, the three-state fault model of wind turbine is established by considering the running, outage and reducing state. On this basis, the randomness of wind speed is considered. The reliability model of wind farm is established by the influence of wind farm wake effect. Based on this model, the probabilistic characteristics of active power output of wind farm are evaluated by Monte Carlo method, and the evaluation method and process are given. Considering the shortcomings of non-sequential Monte Carlo method, based on the three-state fault model of wind turbine, the time series model of wind turbine state and the ARMA model based on wind speed are given based on state duration sampling method. Considering the influence of complex wake effect of wind farm, the reliability model of wind farm for sequential Monte Carlo simulation is established, and a two-sampling sequential Monte Carlo method is proposed for the three-state model of wind turbine. Based on this method, the reliability of active power output of wind farm is evaluated. Based on the above research results, a decentralized sampling Monte Carlo method is used to evaluate the reliability of a regional power generation system. Firstly, considering the randomness of wind power output, the random outage of conventional generator sets and the randomness of load forecasting, the reliability evaluation model of generation system is established, and the sample capacity of conventional Monte Carlo algorithm in probability sampling is large. In this paper, a decentralized sampling Monte Carlo algorithm is proposed to solve the reliability evaluation problem of wind power generation system. The algorithm divides the interval of [0 ~ 1] into several sub-regions. After sampling, the system state judgment and index calculation are carried out for each sub-interval, thus increasing the sampling frequency of the fault state, improving the sampling efficiency, and effectively reducing the sampling times under the requirement of precision. In view of the fact that the generation system does not involve transformer, transmission line and other power network elements, Monte Carlo method is used to evaluate the reliability of wind power generation and transmission system. Firstly, considering the randomness of wind speed, the correlation of wind speed in many wind farms, the outage and reduction of wind turbines, the reliability model of wind farms is established, and the conventional Monte Carlo method is applied to large-scale wind power access. In particular, when a single unit with small capacity is connected, the sample size is large and the efficiency is low. In this paper, a method combining Latin hypercube sampling and Cholesky decomposition in probability sampling in Monte Carlo simulation is proposed. In this method, Latin hypercube sampling is used to improve the coverage of sample values to the distribution space of input random variables, Cholesky decomposition is used to reduce the correlation coefficient between input variables, and the sampling efficiency is improved. Increase convergence speed and improve evaluation accuracy. The relative evaluation program is established in MATLAB, and the examples of 150 MW wind farm, 10 generator power generation system with 2 wind farms and the improved IEEE-RTS79 generation and transmission system are simulated. The effectiveness of the proposed model and the proposed method is verified by the analysis and research of the simulation results.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TM614;TM732
【相似文獻】
相關(guān)期刊論文 前10條
1 漆景星;侯艷紅;;橋梁可靠性評估綜述[J];浙江交通職業(yè)技術(shù)學(xué)院學(xué)報;2011年01期
2 張家常;指控設(shè)備與系統(tǒng)的可靠性評估[J];艦船科學(xué)技術(shù);1995年05期
3 李美珍;;配電網(wǎng)可靠性評估的網(wǎng)絡(luò)等值法模型實驗研究[J];價值工程;2013年31期
4 劉洋,周家啟;大電網(wǎng)可靠性評估最優(yōu)負荷削減模型[J];重慶大學(xué)學(xué)報(自然科學(xué)版);2003年10期
5 鐘杰峰,陳旭,吳寶英,黃金鳳,萬官泉;廣東500kV主網(wǎng)可靠性評估[J];華東電力;2004年03期
6 周正伐;對“威布爾型產(chǎn)品可靠性評估方法應(yīng)用中的幾個問題”一文的幾點看法[J];質(zhì)量與可靠性;2004年02期
7 柳亦鋼;易仕敏;楊華;;發(fā)電廠可靠性評估的解析方法[J];云南電力技術(shù);2005年05期
8 周源泉,王健,常煜輝;某型沖壓發(fā)動機的可靠性評估(續(xù))[J];質(zhì)量與可靠性;2005年01期
9 李國慶;于海承;李奇;邱愛華;;地方供電網(wǎng)可靠性評估[J];東北電力大學(xué)學(xué)報;2006年02期
10 張士峰;楊華波;張金槐;;小樣本成敗型設(shè)備可靠性評估方法[J];核動力工程;2006年05期
相關(guān)會議論文 前10條
1 朱三可;李祥臣;齊俊臣;彭道勇;;可靠性評估中指數(shù)型數(shù)據(jù)向成敗型數(shù)據(jù)的折合[A];2009第十三屆全國可靠性物理學(xué)術(shù)討論會論文集[C];2009年
2 王正良;;同步可靠性評估方法[A];中國工程物理研究院科技年報(2003)[C];2003年
3 夏秀華;;結(jié)構(gòu)可靠性評估方法[A];第四屆全國現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會論文集[C];2004年
4 姚新民;孫偉;劉忠卿;陳以方;;新裝備初期部署階段的可靠性評估[A];2012年全國機械行業(yè)可靠性技術(shù)學(xué)術(shù)交流會暨第四屆可靠性工程分會第四次全體委員大會論文集[C];2012年
5 王德民;雪喜兵;孫秦;羊妗;;復(fù)合材料梁架結(jié)構(gòu)的可靠性評估[A];復(fù)合材料的現(xiàn)狀與發(fā)展——第十一屆全國復(fù)合材料學(xué)術(shù)會議論文集[C];2000年
6 賈曉紅;;典型配電系統(tǒng)的可靠性評估和分析[A];山東電機工程學(xué)會第四屆供電專業(yè)學(xué)術(shù)交流會論文集[C];2007年
7 秦紀(jì)平;劉前進;;基于成功概率的配網(wǎng)可靠性評估[A];中國高等學(xué)校電力系統(tǒng)及其自動化專業(yè)第二十四屆學(xué)術(shù)年會論文集(上冊)[C];2008年
8 吳開貴;周家啟;;線性優(yōu)化神經(jīng)網(wǎng)絡(luò)在電網(wǎng)可靠性評估中的應(yīng)用研究[A];1999年中國神經(jīng)網(wǎng)絡(luò)與信號處理學(xué)術(shù)會議論文集[C];1999年
9 尹鎖柱;敖發(fā)良;;貓?zhí)恿饔蛩樽詣訙y報系統(tǒng)可靠性評估[A];中國電子學(xué)會可靠性分會第十三屆學(xué)術(shù)年會論文選[C];2006年
10 王玉明;;最大熵可靠性評估方法的改進[A];中國工程物理研究院科技年報(2003)[C];2003年
相關(guān)重要報紙文章 前1條
1 石松;基于分離特征樣本的核島主泵可靠性評估和壽命預(yù)測技術(shù)研究[N];科技日報;2007年
相關(guān)博士學(xué)位論文 前10條
1 張可新;動車組可靠性評估及維修策略優(yōu)化方法研究[D];中國鐵道科學(xué)研究院;2015年
2 王昕偉;含風(fēng)電區(qū)域電網(wǎng)的可靠性評估模型與方法[D];華北電力大學(xué)(北京);2014年
3 方艮海;產(chǎn)品可靠性評估中的多源信息融合技術(shù)研究[D];合肥工業(yè)大學(xué);2006年
4 程皖民;基于小子樣復(fù)雜信息集的可靠性評估方法及其應(yīng)用研究[D];國防科學(xué)技術(shù)大學(xué);2006年
5 任淑紅;民航發(fā)動機性能可靠性評估與在翼壽命預(yù)測方法研究[D];南京航空航天大學(xué);2010年
6 何禹清;配電網(wǎng)快速可靠性評估及重構(gòu)方法研究[D];湖南大學(xué);2011年
7 宋曉通;基于蒙特卡羅方法的電力系統(tǒng)可靠性評估[D];山東大學(xué);2008年
8 鐘波;基于軟計算理論的電力系統(tǒng)可靠性評估模型與算法研究[D];重慶大學(xué);2004年
9 汪隆君;電網(wǎng)可靠性評估方法及可靠性基礎(chǔ)理論研究[D];華南理工大學(xué);2010年
10 劉洋;大規(guī)模電力系統(tǒng)并行處理技術(shù)及可靠性評估Web計算系統(tǒng)研究[D];重慶大學(xué);2006年
相關(guān)碩士學(xué)位論文 前10條
1 郭衛(wèi)東;磚混結(jié)構(gòu)中梁的動力特性試驗及可靠性評估[D];河北大學(xué);2015年
2 王旗;基于相似機床信息的CXK5463的可靠性評估[D];燕山大學(xué);2015年
3 謝潛;主動配電網(wǎng)可靠性評估[D];上海交通大學(xué);2015年
4 孫聞浩;基于改進的重要抽樣算法的輸電系統(tǒng)可靠性評估[D];華北電力大學(xué);2015年
5 相英杰;城市配電網(wǎng)可靠性評估及其經(jīng)濟性研究[D];華北電力大學(xué);2015年
6 胡吉祥;供電企業(yè)配電網(wǎng)可靠性評估系統(tǒng)的設(shè)計與實現(xiàn)[D];電子科技大學(xué);2015年
7 陳驥群;考慮配電網(wǎng)網(wǎng)絡(luò)重構(gòu)的可靠性評估[D];華北電力大學(xué);2015年
8 孫帥;電氣主接線可靠性評估及應(yīng)用研究[D];華北電力大學(xué);2015年
9 李芷筠;電力系統(tǒng)繼電保護可靠性評估與管理系統(tǒng)研究[D];華北電力大學(xué);2015年
10 陳松;智能配電網(wǎng)供電可靠性評估[D];華北電力大學(xué);2015年
,本文編號:2134367
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2134367.html