橫向陣列結(jié)構(gòu)肖特基結(jié)輻照電池設(shè)計(jì)
發(fā)布時(shí)間:2018-06-28 18:01
本文選題:碳化硅 + 輻照電池 ; 參考:《西安電子科技大學(xué)》2014年碩士論文
【摘要】:近些年來,由于微機(jī)電系統(tǒng)的出現(xiàn)使人們對(duì)體積小、能夠長(zhǎng)時(shí)間穩(wěn)定提供電能的電池的需求越來越迫切。傳統(tǒng)類型的電池因其各自的局限性無法很好滿足需求,而輻照電池的出現(xiàn)有望從根本上解決這一問題。在所有類型輻照電池中,碳化硅(SiC)基輻照電池因其獨(dú)特的優(yōu)勢(shì)而受到很大的重視。碳化硅與硅材料相比,其禁帶寬度遠(yuǎn)大于前者,并且還具有較高的熱穩(wěn)定性、熱導(dǎo)率以及載流子飽和速率。此外,碳化硅自身具備優(yōu)良抗輻照特性,這也使其成為制造輻照電池的首選材料。本文首先對(duì)現(xiàn)有的輻照電池的研究成果進(jìn)行了深入分析研究,在此基礎(chǔ)上歸納出提高輻照電池性能的主要方法。當(dāng)前對(duì)輻照電池性能的改進(jìn)措施主要集中在輻照源的選取、電極的設(shè)計(jì)以及器件表面結(jié)構(gòu)的創(chuàng)新三個(gè)方面。首先,通過選取具有更高能量及更長(zhǎng)半衰期的輻照源以獲得更多輻照粒子來激發(fā)更多的電子-空穴對(duì);其次,通過采用巧妙的電極設(shè)計(jì)來減小金屬電極對(duì)輻照粒子的阻擋作用使得更多粒子能夠進(jìn)入換能結(jié);另外,利用在器件表面制作三維結(jié)構(gòu)的方式來增加器件的輻照接觸面積以提高對(duì)輻照粒子的吸收效率。這些技術(shù)手段都可以提升電池的性能,其中以采用三維表面結(jié)構(gòu)形式的輻照電池性能提升最為明顯。然而,即便是采用三維表面結(jié)構(gòu)的輻照電池也無法解決輻照粒子吸收效率低這一根本問題。通過對(duì)這類電池結(jié)構(gòu)上的共性研究發(fā)現(xiàn)該類型輻照電池都采用了縱向的換能結(jié)分布結(jié)構(gòu),即換能結(jié)與中性區(qū)沿垂直于器件表面方向分布。這樣中性區(qū)和金屬電極會(huì)遮擋掉很大一部分的輻照粒子導(dǎo)致實(shí)際進(jìn)入電池內(nèi)部的輻照粒子非常少,因此降低了對(duì)輻照粒子利用率低。這種結(jié)構(gòu)的固有缺陷嚴(yán)重制約了電池性能的提高。本文針對(duì)這一問題提出了一種基于肖特基結(jié)的橫向分布輻照電池,其中性區(qū)與換能結(jié)平行器件表面呈橫向陣列排布。通過這一結(jié)構(gòu)創(chuàng)新可有效解決傳統(tǒng)縱向結(jié)構(gòu)輻照電池中性區(qū)對(duì)輻照的遮擋問題,輻照粒子的利用率得以大幅度的提高,在不改變輻照源的情況下輻照電池的轉(zhuǎn)換效率和輸出功率也會(huì)得到大幅度的提升。本文在給出電池設(shè)計(jì)結(jié)構(gòu)的基礎(chǔ)上,進(jìn)一步通過模擬仿真得到了輻照粒子的入射分布情況進(jìn)而得到電池外延層厚度及金屬溝槽深度;通過模擬離子注入及肖特基接觸計(jì)算得出電極間距等結(jié)構(gòu)參數(shù);此外,通過對(duì)碳化硅歐姆接觸及摻雜相關(guān)成果的研究總結(jié),給出了輻照電池各個(gè)區(qū)域摻雜濃度以及歐姆接觸制作方法。本文最后在參考SiC器件制造工藝基礎(chǔ)上結(jié)合橫向陣列輻照電池的結(jié)構(gòu)特點(diǎn)以及結(jié)構(gòu)參數(shù)給出了一套完整的工藝制備流程。工藝流程中在外延層上進(jìn)行溝槽刻蝕是本流程的核心部分,制造這一結(jié)構(gòu)的電池要求具有較好的刻蝕粗糙度,刻蝕工藝在整個(gè)制備流程中具有很高的重要性。通過設(shè)置實(shí)際的刻蝕對(duì)照實(shí)驗(yàn)得出了刻蝕SiC最佳的工藝方法和條件,為這一新結(jié)構(gòu)輻照電池的成功制造探索出可行的工藝條件。本文也存在一定的不足,由于SiC光刻工藝的限制未能實(shí)現(xiàn)樣品的制備不能進(jìn)行實(shí)際的測(cè)試。針對(duì)這一問題可以考慮將肖特基結(jié)換為pn結(jié),這樣做的好處在于可有效提高歐姆電極的間距滿足光刻工藝分辨率的要求。這種方案要制作出p型歐姆接觸,需要解決p型歐姆接觸比接觸電阻高的問題。
[Abstract]:In recent years, due to the emergence of microelectromechanical systems, the demand for batteries that can provide electrical energy for a long time is becoming more and more urgent. Traditional types of batteries can not meet the needs of their respective limitations, and the emergence of irradiated batteries is expected to solve this problem fundamentally. In all types of irradiated batteries, carbon Silicon carbide (SiC) based irradiated batteries have been paid great attention because of their unique advantages. Compared with silicon materials, silicon carbide has a far greater gap width than the former, and has high thermal stability, thermal conductivity and carrier saturation rate. In addition, silicon carbide itself has excellent radiation resistance, which makes it the first to manufacture irradiated batteries. On the basis of this, the main methods to improve the performance of irradiated batteries are summarized. The current improvement measures for the performance of irradiated batteries are mainly focused on the selection of radiation sources, the design of the electrodes and the innovation of the surface structure of the devices. First, the three aspects. By selecting more irradiated sources with higher energy and longer half-life to obtain more irradiated particles to stimulate more electron hole pairs; secondly, by using the ingenious electrode design to reduce the barrier effect of metal electrodes to irradiated particles, more particles can enter the transition junction; in addition, a three-dimensional structure is made on the surface of the device. In this way, the radiation contact area of the device is increased to improve the absorption efficiency of the irradiated particles. These techniques can improve the performance of the batteries, in which the performance of the irradiated cells in the form of three-dimensional surface structure is most obvious. The basic problem of low efficiency is that this type of battery structure has been studied in general. It is found that this type of irradiated battery adopts a longitudinal commutation junction structure, that is, the commutation junction and the neutral zone are perpendicular to the surface direction of the device. So the neutral and metal electrodes will block out a large portion of the irradiated particles and lead to the actual entry. The irradiated particles inside the battery are very small, so the utilization rate of the irradiated particles is lower. The inherent defect of this structure seriously restricts the performance of the battery. In this paper, a transverse distribution irradiated battery based on the Schottky junction is proposed, in which the surface of the parallel device surface is arranged in a transverse array. This structural innovation can effectively solve the shielding problem of radiation in the neutral zone of the radiation battery of the traditional longitudinal structure. The utilization rate of irradiated particles can be greatly improved. The conversion efficiency and output power of the irradiated battery will be greatly improved without changing the irradiation source. The incident distribution of irradiated particles is obtained by simulation, and the thickness of the epitaxial layer and the depth of metal groove are obtained. The structure parameters such as the electrode spacing are calculated by simulating ion implantation and Schottky contact. In addition, the radiation electricity is given through the study of the results of the ohmic contact and doping related to the silicon carbide. In this paper, a complete process preparation process is given on the basis of the structure characteristics and structural parameters of the transverse array irradiated cell based on the SiC device manufacturing process. The battery of this structure requires a good etching roughness and the etching process is of great importance in the whole preparation process. By setting the actual etching control experiment, the best process and conditions for etching SiC are obtained, and the feasible process conditions are explored for the successful fabrication of this new structure irradiated battery. A certain shortage, because of the limitation of the SiC lithography process, the preparation of the sample can not be tested. The Schottky junction can be replaced by the PN junction for this problem. The advantage of this is that the distance between the ohm electrode and the photolithography resolution can be improved effectively. This scheme needs to produce the P type ohmic contact. It is necessary to solve the problem of high ohmic contact ratio of P type.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM910.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前3條
1 姚賢旺;苑偉政;喬大勇;臧博;;4H-SiC肖特基結(jié)式Alpha效應(yīng)微型核電池(英文)[J];傳感技術(shù)學(xué)報(bào);2010年10期
2 陳光遂;肖特基結(jié)C~(-2)-V法測(cè)定n~+埋層擴(kuò)散后的n/p硅外延片表面雜質(zhì)濃度[J];西安交通大學(xué)學(xué)報(bào);1978年03期
3 ;[J];;年期
相關(guān)碩士學(xué)位論文 前3條
1 何航;石墨烯/半導(dǎo)體肖特基結(jié)太陽(yáng)能電池[D];浙江大學(xué);2015年
2 曹帆;橫向陣列結(jié)構(gòu)肖特基結(jié)輻照電池設(shè)計(jì)[D];西安電子科技大學(xué);2014年
3 朱江;具有肖特基結(jié)構(gòu)整流器件的特性研究[D];浙江大學(xué);2012年
,本文編號(hào):2078868
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2078868.html
最近更新
教材專著