天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

生物陰極雙室微生物燃料電池同步除碳脫氮與產(chǎn)電特性研究

發(fā)布時(shí)間:2018-06-27 21:41

  本文選題:微生物燃料電池 + 生物陰極。 參考:《東華大學(xué)》2014年碩士論文


【摘要】:微生物燃料電池(MFC)以電極表面的功能微生物為催化劑,使陽極在低電勢下氧化有機(jī)物,陰極在高電勢還原電子受體,通過電子和質(zhì)子的定向遷移在回路中形成電流。為了克服傳統(tǒng)化學(xué)陰極MFC需要利用貴金屬等催化劑在陰極進(jìn)行氧氣還原以及由于陽離子交換膜(CEM)選擇透過性缺陷造成的陰極pH升高,本研究將硝化引入MFC陰極室,構(gòu)建生物陰極雙室微生物燃料電池。通過陰極室的篩選培養(yǎng),實(shí)現(xiàn)用功能微生物替代傳統(tǒng)重金屬等作催化劑,利用硝化需好氧環(huán)境以及產(chǎn)生質(zhì)子的特點(diǎn),在陰極實(shí)現(xiàn)還原氧氣產(chǎn)電和NH4+-N到N03--N的轉(zhuǎn)化,避免陰極室pH升高對陰極微生物的代謝產(chǎn)生影響。 首先,為了考察有機(jī)碳源對MFC陰極室微生物的影響,在完全自養(yǎng)(不投加有機(jī)碳源)和COD:N=1.7:1條件下,研究了硝化細(xì)菌的生長規(guī)律。結(jié)果表明,馴化后兩種運(yùn)行方式的硝化率均能達(dá)到99%以上,但在不同時(shí)期趨勢卻有所不同。兩個(gè)反應(yīng)器中亞硝酸細(xì)菌和硝酸細(xì)菌個(gè)數(shù)分別達(dá)到了2.5×106、4.5×104和2×106、7.5×l04cfu/mL,處于同一數(shù)量級(jí)上。然而由于1號(hào)反應(yīng)器碳源的單一性,使其污泥濃度逐漸減小,而2號(hào)反應(yīng)器相應(yīng)值則逐漸增加。SEM表明兩池在培養(yǎng)末期均有桿菌、球菌等的出現(xiàn)。在COD:N=1.7:1下,系統(tǒng)更易保持穩(wěn)定性。同時(shí),為了降低構(gòu)建MFC的成本,比較了以碳?xì)趾吞疾甲鳛殛帢O材料,在陰極利用功能微生物作為催化劑時(shí)電池的產(chǎn)電性能。結(jié)果表明,兩電池啟動(dòng)時(shí)間基本相同,20d左右達(dá)到穩(wěn)定,但穩(wěn)定期碳布作陰極的電池電壓比碳?xì)肿麝帢O的電池電壓高出了60mV左右。碳?xì)趾吞疾甲麝帢O時(shí),電池在10d和20d的最大功率密度分別由10.24、11.14mW/m2提升到了18.18、30.15mW/m2,相應(yīng)內(nèi)阻則分別由1000、600Ω降到了250、200Ω。掃描電鏡(SEM)觀察到兩者不同表面特性導(dǎo)致碳?xì)謱ξ勰喔街鴱?qiáng)于碳布,進(jìn)而使氧氣傳遞受到限制,產(chǎn)電降低。 接著,基于啟動(dòng)階段的結(jié)果,選擇碳布作為陰極材料,進(jìn)行了MFC同步除碳、脫氮及產(chǎn)電的研究。分別研究了不同陽極進(jìn)水COD、不同陰極進(jìn)水氨氮、不同陰極室溶解氧(DO)對MFC產(chǎn)電及污染物去除的影響以及硝化在陰極室的作用。研究表明,在陽極進(jìn)水COD為100、400、700、1000mg/L時(shí),電池穩(wěn)定期持續(xù)時(shí)間和電壓逐漸升高,分別為10、50、60、90h以及136.4、145.7、164.9、190.1mV, COD去除率從74.85%上升到了89.89%,但庫倫效率從7.15%下降到了5.66%。在陽極進(jìn)水COD=700mg/L,陰極室DO=4mg/L時(shí),隨著陰極進(jìn)水氨氮濃度的增加(40、80、120mg/L),氨氮去除速率有較大差別,在前24h分別為27、36.2、51.1mg/(L·d),但對電池產(chǎn)電無較大影響,穩(wěn)定期電壓相差不大,分別為165、177、194mV,表現(xiàn)出了一定適應(yīng)性。在陽極進(jìn)水COD=700mg/L,陰極進(jìn)水氨氮濃度為80mg/L時(shí),隨著DO從2mg/L增加到4mg/L,72h氨氮降解速率基本相同,但電池產(chǎn)電性能逐漸提高,12h開路電壓分別為556.8、592.1、597mV,最大功率密度分別為31、52.9、75.2mW/m2,平均電壓分別為139、161、178mV左右。在硝化作用的研究中,發(fā)現(xiàn)陰極進(jìn)水氨氮濃度為20mg/L時(shí),陰極pH在前2h從7.15升高到7.62,但在硝化影響下后又逐漸降低并穩(wěn)定在6.86,而進(jìn)水中無氨氮時(shí),陰極pH在前2h從7.58迅速上升到了8.62,而且后期無明顯變化。 最后分析了運(yùn)行5個(gè)月的碳布陰極MFC微生物種群結(jié)構(gòu)。用聚合酶鏈?zhǔn)椒磻?yīng)(PCR)、變性梯度凝膠電泳(DGGE)技術(shù)對其中的細(xì)菌群落分布進(jìn)行了研究。研究表明碳布陰極MFC陽極微生物菌屬主要是Acinetobacter sp.、 Treponema、Pseudomonas saccharophila、 uncultured Anaerovorax sp.;陰極主要是Sediminibacterium、Treponema、 Pedobacter heparinus、uncultured Anaerovorax sp、Bartonella tamiae。其中Pseudomonas sp.、cinetobacter sp.為常見的陽極微生物產(chǎn)電菌。
[Abstract]:A microbial fuel cell (MFC) uses functional microbes on the surface of the electrode as a catalyst to oxidize the organic matter under the low potential of the anode. The cathode reduces the electron acceptor at a high potential and forms a current in the loop through the directional migration of electrons and protons. In order to overcome the traditional chemical cathode MFC, a catalyst such as precious metals should be used to carry oxygen to the cathode. Reduction and the increase of cathode pH caused by selective permeability defect of cation exchange membrane (CEM). In this study, nitrification was introduced into the MFC cathode chamber to construct a biocathode double chamber microbial fuel cell. Through screening and culture of the cathode chamber, the functional microorganism was used as a catalyst to replace the traditional heavy metals, and the aerobic environment and production were produced by nitrification. The characteristics of proton generation are the reduction of oxygen production and the conversion of NH4+-N to N03--N in the cathode. The increase of pH in cathode chamber will have an effect on the metabolism of cathode microorganisms.
First, in order to investigate the effect of organic carbon source on the microorganism of the MFC cathode chamber, the growth regularity of nitrifying bacteria was studied under the condition of complete autotrophic (not adding organic carbon source) and COD:N=1.7:1. The results showed that the nitrification rate of two operating modes after domestication could reach more than 99%, but the trend in different periods was different. Two reactors in Central Asia. The number of nitrate bacteria and nitrate bacteria reached 2.5 * 106,4.5 * 104 and 2 x 106,7.5 x l04cfu/mL, at the same order of magnitude. However, because of the single carbon source of the No. 1 reactor, the sludge concentration gradually decreased, while the corresponding value of the 2 reactor increased gradually by.SEM indicating that the two pool appeared at the end of the culture and appeared in COD. Under N=1.7:1, the system is more stable. At the same time, in order to reduce the cost of building MFC, the electric performance of the battery is compared with the carbon felt and carbon cloth as the cathode material and the cathode using the functional microorganism as the catalyst. The results show that the starting time of the two battery is basically the same, the 20d is stable, but the stable carbon cloth is used as the cathode battery. The voltage of the cell voltage is about 60mV higher than that of the carbon felt as the cathode. When the carbon felt and carbon cloth are used as the cathode, the maximum power density of the 10d and 20d increases from 10.24,11.14mW/m2 to 18.18,30.15mW/m2, respectively, and the corresponding internal resistance is reduced from 1000600 Omega to 250200 Omega respectively. The scanning electron microscope (SEM) observed that the different surface characteristics lead to the carbon felt pairs. Sludge adhesion is stronger than that of carbon cloth, which limits oxygen production and reduces electricity production.
Then, based on the results of the start-up phase, the carbon cloth was selected as the cathode material, and the simultaneous removal of carbon, nitrogen and electricity in MFC was carried out. The effects of different anode influent COD, different cathode influent ammonia nitrogen, different cathode chamber dissolved oxygen (DO) on the production of MFC and the removal of pollutants and the effect of Nitrification on the cathode chamber were studied. When the extreme influent COD is 1004007001000mg/L, the duration and voltage of the battery stability increase gradually, 10,50,60,90h and 136.4145.7164.9190.1mV respectively. The removal rate of COD increases from 74.85% to 89.89%, but the efficiency of Kulun decreases from 7.15% to 5.66%. in the anode influent COD=700mg/L, the cathode chamber DO=4mg/L, with the cathodic influent ammonia nitrogen concentration. The increase (40,80120mg/L), the removal rate of ammonia nitrogen is very different, the former 24h is 27,36.2,51.1mg/ (L. D), but it has no big effect on the battery production, and the voltage of the stable phase is not very different, and it is 165177194mV, respectively, which shows certain adaptability. When the anode influent COD= 700mg/L, the concentration of the ammonia nitrogen in the cathode is 80mg/L, as DO increases from 2mg/L to 2mg/L. 4mg/L, 72h ammonia nitrogen degradation rate is basically the same, but the battery production performance increases gradually, 12h open circuit voltage is 556.8592.1597mV, the maximum power density is 31,52.9,75.2mW/m2, the average voltage is about 139161178mV respectively. In the study of nitrification, it was found that when the concentration of ammonia nitrogen was 20mg/L, the cathode pH was in the front 2H from 7. .15 increased to 7.62, but gradually decreased and stabilized at 6.86 after nitrification, while the cathode pH increased rapidly from 7.58 to 8.62 in the former 2h, and there was no obvious change in the later period.
Finally, the microorganism population structure of the carbon cathode MFC was analyzed for 5 months. The bacterial community distribution was studied by polymerase chain reaction (PCR) and denaturalization gradient gel electrophoresis (DGGE). The study showed that the microorganism of the carbon cathode MFC anode was mainly Acinetobacter sp., Treponema, Pseudomonas saccharophila, uncult. Ured Anaerovorax sp.; the cathode is mainly Sediminibacterium, Treponema, Pedobacter heparinus, uncultured Anaerovorax SP, Bartonella tamiae., which is a common anode microorganism producing bacteria.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM911.45;X703

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張金娜;趙慶良;尤世界;張國棟;;生物陰極微生物燃料電池不同陰極材料產(chǎn)電特性[J];高等學(xué);瘜W(xué)學(xué)報(bào);2010年01期

2 黃霞;梁鵬;曹效鑫;范明志;;無介體微生物燃料電池的研究進(jìn)展[J];中國給水排水;2007年04期

3 倪紅;熊哲;張珊;曾思泉;李林;;多孔陶粒固定化微生物效果及掃描電鏡觀察[J];湖北大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年02期

4 楊紅艷;龍秀娟;李清華;;硝化細(xì)菌富集培養(yǎng)及處理富營養(yǎng)化水體應(yīng)用研究[J];環(huán)境保護(hù)科學(xué);2007年06期

5 陳捷音;;水中亞硝化細(xì)菌和硝化細(xì)菌檢測方法的探討[J];環(huán)境監(jiān)測管理與技術(shù);2007年03期

6 李兆飛;陶虎春;梁敏;李偉;薛安;;雙室微生物燃料電池不同接種條件下處理薯蕷素廢水[J];環(huán)境科學(xué)研究;2009年04期

7 盧娜;周順桂;張錦濤;倪晉仁;;利用玉米浸泡液產(chǎn)電的微生物燃料電池研究[J];環(huán)境科學(xué);2009年02期

8 王超;薛安;趙華章;張寶剛;倪晉仁;;單室型微生物燃料電池處理黃姜廢水的性能研究[J];環(huán)境科學(xué);2009年10期

9 張子健;吳偉偉;王建龍;;全自養(yǎng)硝化污泥的顆粒化過程研究[J];環(huán)境科學(xué);2010年01期

10 謝珊;陳陽;梁鵬;黃霞;;好氧生物陰極型微生物燃料電池的同時(shí)硝化和產(chǎn)電的研究[J];環(huán)境科學(xué);2010年07期

,

本文編號(hào):2075370

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2075370.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶65f4d***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com
空之色水之色在线播放| 欧美日韩国产综合特黄| 国产成人免费激情视频| 国产欧美日韩精品自拍| 欧美一区二区三区在线播放| 国产大屁股喷水在线观看视频| 亚洲国产综合久久天堂| 亚洲中文字幕在线综合视频| 日韩精品中文在线观看| 人妻内射在线二区一区| 欧美大胆美女a级视频| 亚洲熟女乱色一区二区三区| 爱在午夜降临前在线观看| 人妻亚洲一区二区三区| 亚洲妇女作爱一区二区三区| 美女露小粉嫩91精品久久久| 成人精品视频在线观看不卡| 午夜午夜精品一区二区| 熟女乱一区二区三区四区| 日本三区不卡高清更新二区| 噜噜中文字幕一区二区| 内射精子视频欧美一区二区 | 午夜视频免费观看成人| 日本精品最新字幕视频播放| 欧美中文日韩一区久久| 高中女厕偷拍一区二区三区| 久久精品偷拍视频观看| 亚洲欧美日韩网友自拍| 欧美三级精品在线观看| 91日韩在线观看你懂的| 日韩一区欧美二区国产| 一区二区免费视频中文乱码国产| 精品久久综合日本欧美| 欧美日韩国产二三四区| 少妇人妻精品一区二区三区 | 国产欧美日韩综合精品二区| 樱井知香黑人一区二区| 高清不卡一卡二卡区在线| 日本妇女高清一区二区三区| 久久午夜福利精品日韩| 少妇肥臀一区二区三区|