天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

碳納米管增強(qiáng)錫銅合金負(fù)極的一體化結(jié)構(gòu)設(shè)計(jì)及儲(chǔ)鋰性能研究

發(fā)布時(shí)間:2018-06-18 07:15

  本文選題:鋰離子電池 + 負(fù)極材料。 參考:《湘潭大學(xué)》2014年博士論文


【摘要】:我國(guó)對(duì)鋰離子電池材料及其關(guān)鍵技術(shù)的發(fā)展尤為重視,將其列入到《2006~2020年的國(guó)家中長(zhǎng)期科技發(fā)展規(guī)劃綱要》中。與此同時(shí),電動(dòng)汽車、混合動(dòng)力汽車等大型交通工具以及其它大型用電設(shè)備的高速發(fā)展也對(duì)鋰離子電池在容量方面提出了更高的要求。負(fù)極材料是影響鋰離子電池容量的關(guān)鍵材料之一。作為新型負(fù)極材料的杰出代表之一,錫基合金負(fù)極材料的理論質(zhì)量比容量(993mAh/g)是石墨負(fù)極的近三倍。但該材料在充放電過程中伴隨著巨大的體積變形(260%),導(dǎo)致材料在充放電過程中粉化脫落,降低材料的電化學(xué)循環(huán)性能,該現(xiàn)象是阻礙錫基合金負(fù)極材料的市場(chǎng)化應(yīng)用的關(guān)鍵所在。提升錫基合金負(fù)極材料的循環(huán)性能的方法眾多,與碳材料復(fù)合是有效方式之一,其中與碳納米管復(fù)合的報(bào)道逐漸增多。一體化電極材料能減少傳統(tǒng)電極在集成過程中的冗余連接成分(導(dǎo)電劑與粘結(jié)劑),從而提高空間與材料的利用率,因而該類型電極也被廣泛地應(yīng)用于錫基負(fù)極材料當(dāng)中。 本論文以錫基合金負(fù)極的商業(yè)化應(yīng)用為目標(biāo),針對(duì)錫基合金負(fù)極存在的以上不足,借鑒集流體與活性材料一體化的思想,采用生產(chǎn)成本低廉,工藝簡(jiǎn)單的電沉積,結(jié)合熱處理的工藝方法,制備了不同結(jié)構(gòu)類型的電極,并對(duì)其微觀結(jié)構(gòu)與儲(chǔ)鋰性能進(jìn)行了研究。本論文獲得的創(chuàng)新性研究成果如下: (1)為了提高錫銅合金負(fù)極的循環(huán)性能,我們基于錫/銅交替的多層結(jié)構(gòu),在低溫短時(shí)熱擴(kuò)散處理?xiàng)l件下形成了一體化Cu6Sn5合金負(fù)極。我們采用電鍍的方法,以銅帶基底成功制備了特定厚度比的錫/銅多層膜結(jié)構(gòu)材料。再對(duì)多層結(jié)構(gòu)材料進(jìn)行熱處理,從而得到一體化錫銅合金負(fù)極。并研究了熱處理溫度等參數(shù)對(duì)電極材料結(jié)構(gòu)與循環(huán)性能的影響。結(jié)果表明,由于不同溫度下原子活性不同,多層結(jié)構(gòu)材料熱處理形成的合金成分存在差異。多層結(jié)構(gòu)材料在200℃,熱處理30min時(shí),其電化學(xué)循環(huán)性能最優(yōu),且該電極材料比傳統(tǒng)方法制備的電極容量更高,循環(huán)更為穩(wěn)定,在經(jīng)過40次循環(huán)后,容量高出傳統(tǒng)錫銅合金負(fù)極26.9%。該電極性能優(yōu)越的原因在于電極活性材料主要為Cu6Sn5相,且材料晶粒細(xì)小,在熱處理前后變化不大。 (2)為了緩解錫基負(fù)極材料在充放電過程中材料粉化的問題,我們基于高強(qiáng)度,高導(dǎo)電的碳納米管,將其與錫金屬負(fù)極復(fù)合制備了Sn-CNTs一體化電極材料。我們采用復(fù)合電沉積的方式,制備了Sn-CNTs復(fù)合電極,并對(duì)制備復(fù)合電極的工藝參數(shù)以及CNTs直徑對(duì)電極循環(huán)性能的影響進(jìn)行了研究。結(jié)果表明,CNTs的含量隨電流密度不同而改變;采用直徑范圍為(10~20nm)的CNTs對(duì)電極的循環(huán)性能提升最為明顯。該電極循環(huán)性能最好的原因在于:電極內(nèi)CNTs含量最高,內(nèi)阻最小。 (3)為了增強(qiáng)集流體與活性材料之間的結(jié)合,進(jìn)一步減緩錫銅合金負(fù)極材料在充放電過程中材料粉化的問題,我們?cè)赟n-CNTs復(fù)合電極基礎(chǔ)上,基于Cu-CNTs復(fù)合鍍層,設(shè)計(jì)了Sn/Cu-CNTs雙層結(jié)構(gòu)電極,增強(qiáng)了活性材料(錫銅合金)與集流體(銅)之間的電連接,并最終熱處理得到Sn-Cu-CNTs一體化電極材料。我們采用電沉積的方式,首先在銅箔基底上制備Cu-CNTs復(fù)合鍍層,再電沉積了一定厚度的錫鍍層,最后熱處理得到Sn-Cu-CNTs一體化電極。我們首先研究了電流密度對(duì)復(fù)合鍍層表面形貌與碳納米管含量的影響,然后研究了熱處理溫度對(duì)電極電化學(xué)循環(huán)性能的影響。結(jié)果表明,Cu-CNTs復(fù)合鍍層形貌與碳含量均隨電流密度改變而改變,電極在200℃熱處理6h后循環(huán)性能最優(yōu)。該電極循環(huán)性能最優(yōu)的原因在于:電極活性材料晶粒細(xì)小,與集流體之間結(jié)合良好;CNTs與活性材料連接緊密,能起到骨架材料與導(dǎo)電連接的作用。 (4)為了提高了活性材料內(nèi)碳納米管的含量,達(dá)到改善錫基合金循環(huán)性能的目的,我們以Cu-CNTs連接層為基礎(chǔ),將Sn-CNTs活性材料與Cu-CNTs連接層結(jié)合,設(shè)計(jì)了Sn-CNTs/Cu-CNTs復(fù)合電極。我們采用復(fù)合電沉積的方式,以銅箔為基底先電沉積Cu-CNTs復(fù)合鍍層,然后在電沉積Sn-CNTs復(fù)合鍍層制備了Sn-CNTs/Cu-CNTs復(fù)合電極材料,并對(duì)熱處理時(shí)間對(duì)電極循環(huán)性能的影響進(jìn)行了研究。結(jié)果表明,,經(jīng)過200℃,6h熱處理后,電極的循環(huán)性能最優(yōu),在1C倍率下,充放電100次循環(huán)后容量仍可達(dá)到584.4mAh/g;且電極倍率性能良好,在20C倍率下充放電時(shí),其容量仍可達(dá)到434.6mAh/g。電極循環(huán)性能最優(yōu)的原因在于:電極活性材料內(nèi)部分布有大量的CNTs,內(nèi)阻相對(duì)較小,離子傳導(dǎo)性好;電極內(nèi)部存在一定的孔隙結(jié)構(gòu),能為錫銅合金在嵌脫鋰過程中的體積變化提供緩沖空間;電極相結(jié)構(gòu)以Cu6Sn5為主,且Sn與Cu3Sn的含量相對(duì)較少。 本文通過設(shè)計(jì)不同結(jié)構(gòu)類型的一體化錫基合金負(fù)極材料,采用廉價(jià)低成本的方法,極大地提升了錫銅合金負(fù)極材料的循環(huán)性能。由于本文采用的是一體化電極材料,減少了冗余的連接成分,因而能提升全電池的體積容量,為該材料的商業(yè)化應(yīng)用奠定了堅(jiān)實(shí)的基礎(chǔ)。
[Abstract]:China attaches great importance to the development of lithium ion battery materials and its key technologies, and puts it into the national medium and long term development plan of science and technology in <2006~2020. At the same time, the rapid development of large traffic tools, such as electric vehicles, hybrid electric vehicles and other large electric equipment, also puts forward the capacity of lithium ion batteries in terms of capacity. Higher requirements. Negative electrode material is one of the key materials affecting the capacity of lithium ion batteries. As one of the outstanding representative of the new anode material, the theoretical mass ratio (993mAh/g) of the tin based alloy negative electrode is nearly three times that of the graphite negative electrode. However, the material is accompanied by a huge volume deformation (260%) during the charge discharge process, which leads to the material. This phenomenon is the key to the market application of tin based alloy negative electrode during charge discharge, which is the key to the market application of tin based alloy negative electrode material. There are many ways to improve the cycle performance of tin based alloy negative electrode material, and the composite of carbon materials is one of the effective ways, and the report of composite with carbon nanotubes is increasing gradually. The integrated electrode material can reduce the redundant connection components (conductive agent and binder) of the traditional electrode in the integration process, thus improving the utilization of space and materials, so the type electrode is also widely used in tin based negative electrode materials.
In this paper, aiming at the commercialization of tin based alloy negative electrode, in view of the above shortcomings of tin based alloy negative electrode, using the idea of integration of fluid collection and active material, using low production cost, simple process electrodeposition and heat treatment process, the electrode of different structure types was prepared, and its microstructure and storage were also made. Lithium properties have been studied. The innovative research results obtained in this paper are as follows:
(1) in order to improve the cyclic performance of the tin copper alloy negative electrode, we formed an integrated Cu6Sn5 alloy negative electrode under the condition of low temperature and short-time heat diffusion treatment based on the multilayer structure of tin / copper alternately. The effects of heat treatment temperature and other parameters on the structure and cyclic properties of the electrode materials were investigated by heat treatment. The results showed that the alloy components formed by the heat treatment of multilayer structure materials were different because of the different atomic activity at different temperatures. The multilayer structure material was treated at 200 degrees C and heat treated for 30min. The optimal electrochemical performance, electrode capacity and the electrode material than the traditional preparation method of the higher cycle is more stable, after 40 cycles, the capacity is higher because of the advantages of traditional tin copper alloy anode electrode is 26.9%. the electrode active material is mainly Cu6Sn5 phase, and the material grains in heat treatment after a little change.
(2) in order to alleviate the material pulverization of tin based anode materials during charging and discharging, based on the high strength and high conductivity carbon nanotubes, we prepared the Sn-CNTs integrated electrode material with the tin metal anode. We prepared the Sn-CNTs composite electrode by composite electrodeposition, and the process parameters for the preparation of the composite electrode were made. The effect of the diameter of CNTs on the performance of the electrode cycle was studied. The results showed that the content of CNTs changed with the current density, and the cycle performance of the electrode with the diameter range of (10~20nm) was the most obvious. The best cycle performance of the electrode was that the CNTs content in the electrode was the highest and the internal resistance was the least.
(3) in order to enhance the combination of fluid collector and active material to further slow the material pulverization of Sn Cu alloy negative material during charge discharge process, based on the Sn-CNTs composite electrode, based on the Cu-CNTs composite coating, the Sn/Cu-CNTs double layer structure electrode was designed to enhance the active material (tin copper alloy) and the fluid collector (copper). Sn-Cu-CNTs integrated electrode materials were obtained by electric connection and final heat treatment. We first prepared Cu-CNTs composite coating on copper foil substrate by electrodeposition, and then electrodeposited a certain thickness of tin coating. Finally, the Sn-Cu-CNTs integrated electrode was obtained by heat treatment. The surface morphology of the composite coating was first studied. The influence of the content of carbon nanotubes was studied. The effect of heat treatment temperature on the electrochemical performance of electrode was studied. The results showed that the morphology and carbon content of the Cu-CNTs composite coating changed with the current density, and the performance of the electrode was the best after heat treatment at 200 c for 6h. The optimal cycle performance of the electrode was the electrode active material crystal. Fine particles are well integrated with the collector. CNTs is tightly linked with active materials, and can play a role in the connection between framework materials and conductive materials.
(4) in order to improve the content of carbon nanotubes in active materials and to improve the cycling performance of tin based alloys, we designed the Sn-CNTs/Cu-CNTs composite electrode by combining the Sn-CNTs active material with the Cu-CNTs connection layer on the basis of the Cu-CNTs connection layer. We used the composite electrodeposition to deposit the Cu-CNTs complex with copper foil as the base. Sn-CNTs/Cu-CNTs composite electrode was prepared by electrodeposition of Sn-CNTs composite coating, and the effect of heat treatment time on the performance of electrode cycle was studied. The results showed that after 6h heat treatment, the cycle performance of the electrode was the best, and the capacity of 100 cycles after charge discharge was 584.4mAh/g at 1C ratio. The performance of the electrode has a good performance. When charging and discharging at the 20C ratio, the capacity of the electrode can still reach the optimal cycle performance of the 434.6mAh/g. electrode. The internal distribution of the electrode has a large number of CNTs, the internal resistance is relatively small, the ionic conductivity is good, and the inner pore structure exists in the electrode, which can be the body of the tin and copper alloy in the process of lithium-ion removal. Product variation provides buffer space; the electrode structure is mainly Cu6Sn5, and the content of Sn and Cu3Sn is relatively small.
In this paper, the cyclic properties of tin copper alloy negative materials are greatly improved by the design of integrated tin based alloy negative materials with different structural types and low cost and low cost. Since this paper uses an integrated electrode material, it reduces the redundant connection components and thus improves the volume capacity of the whole battery as a Merchant of the material. The industrial application laid a solid foundation.
【學(xué)位授予單位】:湘潭大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM912

【共引文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳偉;張以河;;鋰電池用PEO基固態(tài)聚合物電解質(zhì)研究進(jìn)展及應(yīng)用[J];工程塑料應(yīng)用;2010年06期

2 李衛(wèi);同格拉格;牟其勇;謝燕婷;;尖晶石錳酸鋰顆粒的物理特性對(duì)電化學(xué)性能的影響[J];北京大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年S1期

3 問立寧;用于鋰離子電池?zé)岚踩Wo(hù)的正溫度系數(shù)材料[J];北京理工大學(xué)學(xué)報(bào);2004年07期

4 趙書利;金岑;喻濟(jì)兵;;鋰離子蓄電池技術(shù)應(yīng)用與發(fā)展[J];船電技術(shù);2009年12期

5 樂毅誠;石磊;吳飛;;鋰離子電池負(fù)極材料的研究進(jìn)展[J];船電技術(shù);2011年06期

6 李昌明;張仁元;李偉善;;硅材料在鋰離子電池中的應(yīng)用研究進(jìn)展[J];材料導(dǎo)報(bào);2006年09期

7 黃原君;蘇光耀;雷鋼鐵;高德淑;李朝暉;陳平;;多元復(fù)合正極材料LiNi_1/_3Co_1/_3Mn_1/3O_2的研究進(jìn)展[J];材料導(dǎo)報(bào);2006年S1期

8 張露露;楊學(xué)林;游敏;張鵬昌;;銀的添加方式對(duì)LiFePO_4性能的影響[J];材料導(dǎo)報(bào);2009年06期

9 韓立國(guó);盧安賢;李秀英;;鋰離子玻璃及微晶玻璃固體電解質(zhì)的發(fā)展及應(yīng)用[J];材料導(dǎo)報(bào);2009年07期

10 樊星;鄭永平;沈萬慈;;鋰離子電池硅/碳復(fù)合負(fù)極材料的研究進(jìn)展[J];材料導(dǎo)報(bào);2009年19期

相關(guān)會(huì)議論文 前10條

1 崔少華;楊曉民;;用于圓柱形鋰離子電池的注液工裝[A];節(jié)能環(huán)保 和諧發(fā)展——2007中國(guó)科協(xié)年會(huì)論文集(一)[C];2007年

2 梁亮;王瑋;吳惠康;房晶瑞;鮑玉勝;;聚合物電解質(zhì)的研究與進(jìn)展[A];第六屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(4)[C];2007年

3 任麗;張雪峰;王立新;張福強(qiáng);;聚吡咯電導(dǎo)率對(duì)鋰/聚吡咯二次電池性能的影響[A];第六屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(4)[C];2007年

4 周曉玲;黃瑞安;吳肇聰;楊斌;戴永年;;溶膠-凝膠法合成Li_4Ti_5O_(12)鋰離子電池負(fù)極材料及其電化學(xué)性能研究[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第6分冊(cè))[C];2010年

5 宋文生;閻宏云;付青存;劉翠云;張玉清;;PEO在聚合物鋰離子電池中的應(yīng)用[A];中國(guó)聚氨酯工業(yè)協(xié)會(huì)第十三次年會(huì)論文集[C];2006年

6 蔣子江;齊力;;有機(jī)/無機(jī)納米雜化電解質(zhì)的FT-IR和NMR結(jié)構(gòu)表征[A];第十六屆全國(guó)波譜學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2010年

7 陸安江;張正平;唐薇;;兼容USB的便攜式設(shè)備鋰電池充電電路設(shè)計(jì)[A];2007'中國(guó)儀器儀表與測(cè)控技術(shù)交流大會(huì)論文集(二)[C];2007年

8 李昌明;李偉善;張仁元;;鋰離子電池硅基負(fù)極材料的研究[A];第十三次全國(guó)電化學(xué)會(huì)議論文摘要集(上集)[C];2005年

9 謝輝;唐致遠(yuǎn);;聚合物鋰高子電池電解質(zhì)的研究進(jìn)展[A];第十三次全國(guó)電化學(xué)會(huì)議論文摘要集(上集)[C];2005年

10 苑克國(guó);孫婧;余仲寶;王安邦;;PEO基納米復(fù)合聚合物電解質(zhì)的制備與電化學(xué)性能的研究[A];第十三次全國(guó)電化學(xué)會(huì)議論文摘要集(上集)[C];2005年

相關(guān)博士學(xué)位論文 前10條

1 相佳媛;鋰離子電池相變型負(fù)極材料銅、鎳系化合物的設(shè)計(jì)制備及改性研究[D];浙江大學(xué);2011年

2 丁元力;微納結(jié)構(gòu)LiMn_2O_4的可控合成及其電化學(xué)性能研究[D];浙江大學(xué);2011年

3 汪達(dá);嵌入型含鋰金屬氧化物鋰離子電池負(fù)極材料的研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2011年

4 竇樹梅;鋰離子電池正極材料Li-Ni-Mn-O體系的制備與改性研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2010年

5 靳尉仁;鋰離子動(dòng)力電池性能及其仿真研究[D];北京有色金屬研究總院;2011年

6 李靈均;綜合利用紅土鎳礦制備鋰離子電池正極材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2和LiFePO_4的研究[D];中南大學(xué);2011年

7 蔣慶來;漿料噴霧干燥法制備球形錳酸鋰正極材料及其改性研究[D];中南大學(xué);2011年

8 馬立文;鋰錳氧化物及其鋰離子篩的制備、性能及應(yīng)用[D];中南大學(xué);2011年

9 曹雁冰;聚陰離子型鐵系鋰離子電池正極材料的合成及改性研究[D];中南大學(xué);2010年

10 崔王君;鋰離子電池錫基負(fù)極材料的合成及性能表征[D];復(fù)旦大學(xué);2011年

相關(guān)碩士學(xué)位論文 前10條

1 楊傳浩;鋰離子電池正極材料LiFePO_4交流阻抗的研究[D];山東科技大學(xué);2010年

2 秦明;鋰離子電池正極材料磷酸錳鋰合成方法的研究[D];山東科技大學(xué);2010年

3 李強(qiáng);Fe對(duì)Sn_xCo_y/C負(fù)極材料的結(jié)構(gòu)和電性能的影響[D];遼寧工程技術(shù)大學(xué);2009年

4 邱素芬;MgMn雙元素?fù)诫s改性LiFePO_4的研究[D];遼寧工程技術(shù)大學(xué);2009年

5 徐樂;樹脂炭包覆微晶石墨作鋰離子電池負(fù)極材料研究[D];長(zhǎng)沙理工大學(xué);2010年

6 胡時(shí)光;聚陰離子型正極材料LiFePO_4/C、Li_2FeSiO_4/C的制備及電化學(xué)性能研究[D];湘潭大學(xué);2010年

7 占孝云;聚苯乙烯模板法制備鋰離子電池材料及電化學(xué)性能研究[D];湘潭大學(xué);2010年

8 王國(guó)寶;高性價(jià)比鋰離子電池正極材料磷酸鐵鋰的合成及改性研究[D];湘潭大學(xué);2010年

9 楊雙磊;鋰離子電池電極材料的制備及其電化學(xué)性能研究[D];湖南工業(yè)大學(xué);2010年

10 劉毅;金屬空氣燃料電池聚合物電解質(zhì)的合成[D];哈爾濱理工大學(xué);2010年



本文編號(hào):2034649

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2034649.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶72b8a***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
九九九热视频免费观看| 日韩精品视频免费观看| 国产精品午夜福利在线观看| 午夜视频免费观看成人| 亚洲欧洲一区二区综合精品| 日韩在线视频精品中文字幕| 亚洲中文字幕熟女丝袜久久| 午夜国产精品福利在线观看| 大香蕉伊人精品在线观看| 国产盗摄精品一区二区视频| 高中女厕偷拍一区二区三区 | 国产一区二区不卡在线播放| 色涩一区二区三区四区| 精品女同在线一区二区| 欧美大胆女人的大胆人体| 亚洲国产av一二三区| 国产韩国日本精品视频| 国产老熟女乱子人伦视频| 亚洲熟妇熟女久久精品 | 五月婷日韩中文字幕四虎| 欧美激情一区=区三区| 欧美日韩精品人妻二区三区| 麻豆视传媒短视频在线看| 欧美自拍系列精品在线| 绝望的校花花间淫事2| 亚洲欧美黑人一区二区| av国产熟妇露脸在线观看| 黄色日韩欧美在线观看| 内射精子视频欧美一区二区| 欧美一级片日韩一级片| 亚洲二区欧美一区二区| 日韩精品一级片免费看| 精品久久少妇激情视频| 日韩av欧美中文字幕| 日本一二三区不卡免费| 免费在线成人激情视频| 日本欧美三级中文字幕| 国产永久免费高清在线精品| 在线观看视频成人午夜| 91久久精品中文内射| 欧美三级大黄片免费看|