傳熱能力對光伏電池特性的影響
本文選題:光伏電池 + 溫差發(fā)電模塊。 參考:《重慶大學(xué)》2014年碩士論文
【摘要】:隨著節(jié)能減排、可持續(xù)發(fā)展等觀念的深入人心,光伏發(fā)電作為一種清潔環(huán)保的發(fā)電方式越來越受到人們的關(guān)注。光伏發(fā)電的核心元件是光伏電池,然而工作溫度卻制約了光伏電池的發(fā)電效率。研究表明:溫度每升高1C,開路電壓降低0.4%,短路電流升高0.25%,光伏電池的最大輸出功率降低0.06%。本文從傳熱的角度出發(fā),采用模擬與實驗相結(jié)合的方式來研究進(jìn)入系統(tǒng)熱流密度、系統(tǒng)與外界換熱情況以及接觸熱阻等因素對光伏電池溫度分布和發(fā)電性能的影響。 研究表明:光伏發(fā)電系統(tǒng)與外界換熱能力的大小直接影響到光伏電池的溫度,進(jìn)而影響到發(fā)電效率。考慮進(jìn)入系統(tǒng)內(nèi)部的熱流密度為1376W/m2,采用空氣自然對流方式換熱(對應(yīng)Nu數(shù)為14.98),光伏電池的發(fā)電效率可達(dá)17.6%。若采用強(qiáng)制對流或水冷方式等強(qiáng)化措施換熱則可降低光伏電池的溫度,提高發(fā)電效率,當(dāng)Nu數(shù)達(dá)到1500時,光伏電池的發(fā)電效率最大可達(dá)到21%。若在光伏電池底部加入溫差發(fā)電模塊,組成光伏-溫差混合系統(tǒng),同樣進(jìn)入混合系統(tǒng)內(nèi)部的熱流密度為1376W/m2,采用空氣自然對流方式換熱(對應(yīng)Nu數(shù)為14.98),,混合系統(tǒng)中光伏電池的發(fā)電效率可增加到19.37%。溫差發(fā)電模塊的加入使光伏電池的溫度降低8.3%,發(fā)電效率增加10.1%。若混合系統(tǒng)與外界換熱的Nu數(shù)大于1500,則光伏電池和溫差發(fā)電模塊的發(fā)電效率幾乎與Nu數(shù)的變化無關(guān)。 在研究系統(tǒng)傳熱特性時發(fā)現(xiàn),接觸熱阻在很大程度上制約了接觸面間的熱量傳遞,因此溫差模塊與光伏電池之間接觸方式的選擇尤為重要。通過對比不同接觸形式發(fā)現(xiàn),本文提出的側(cè)壁過盈接觸方式相比于直接接觸和導(dǎo)熱硅膠接觸方式能夠有效的降低接觸熱阻,強(qiáng)化傳熱。
[Abstract]:With the concept of energy saving and emission reduction, sustainable development and so on, photovoltaic power generation as a clean and environmentally friendly power generation has attracted more and more attention. The core component of photovoltaic power generation is photovoltaic cells, but the working temperature restricts the efficiency of photovoltaic cells. The results show that the open-circuit voltage decreases 0.4, the short-circuit current increases 0.25 and the maximum output power of photovoltaic cells decreases 0.06 for each temperature rise of 1C. From the point of view of heat transfer, the effects of heat flux, heat transfer between the system and the outside world and contact thermal resistance on the temperature distribution and generation performance of photovoltaic cells are studied by combining simulation and experiment. The results show that the heat transfer capacity of photovoltaic system and the outside world directly affect the temperature of photovoltaic cell and then affect the efficiency of power generation. The heat flux entering the system is 1376W / m ~ 2, and the natural convection heat transfer is adopted (corresponding to the Nu number is 14.98), the efficiency of photovoltaic cell can reach 17.6g / m ~ (2). If forced convection or water cooling is used to heat transfer, the temperature of photovoltaic cell can be reduced and the efficiency of power generation can be improved. When the number of Nu reaches 1500, the maximum efficiency of photovoltaic cell can reach 21. If a thermoelectricity module is added to the bottom of a photovoltaic cell, a hybrid photovoltaic / temperature differential system is formed. The heat flux entering the hybrid system is 1376 W / m ~ 2, and the heat transfer by natural air convection (corresponding to the Nu number is 14.98), the efficiency of photovoltaic cells in the hybrid system can be increased to 19.37. With the addition of thermoelectric module, the temperature of photovoltaic cell is decreased by 8.3, and the efficiency of power generation is increased by 10.1. If the Nu number of heat transfer between the hybrid system and the outside world is greater than 1500, the generation efficiency of photovoltaic cells and thermoelectric modules is almost independent of the variation of Nu number. When studying the heat transfer characteristics of the system, it is found that the contact thermal resistance restricts the heat transfer between the contact surfaces to a great extent, so the choice of the contact mode between the temperature difference module and the photovoltaic cell is particularly important. By comparing the different contact forms, it is found that the lateral wall interference contact mode can effectively reduce the contact thermal resistance and enhance the heat transfer compared with the direct contact and thermal conductive silica gel contact mode.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM914
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李如春;;基于微通道散熱的大功率LED陣列的熱阻研究[J];半導(dǎo)體光電;2010年04期
2 陳雪;韓玉閣;李強(qiáng);宣益民;;熱光伏系統(tǒng)基本特征研究[J];電工電能新技術(shù);2007年04期
3 傅望;周林;郭珂;劉強(qiáng);代璐;黃勇;;光伏電池工程用數(shù)學(xué)模型研究[J];電工技術(shù)學(xué)報;2011年10期
4 周定偉,馬重芳,劉登瀛;圓形液體射流沖擊單相局部對流傳熱的實驗研究[J];動力工程;2003年04期
5 吳忠軍;劉國海;廖志凌;;硅太陽電池工程用數(shù)學(xué)模型參數(shù)的優(yōu)化設(shè)計[J];電源技術(shù);2007年11期
6 陳中華;趙敏榮;葛亮;李慧玉;;硅太陽電池數(shù)學(xué)模型的簡化[J];上海電力學(xué)院學(xué)報;2006年02期
7 談和平,余其錚,米歇爾·拉勒芒;高溫下半透明介質(zhì)內(nèi)輻射與導(dǎo)熱的非穩(wěn)態(tài)復(fù)合換熱[J];工程熱物理學(xué)報;1989年03期
8 郝麗敏;趙耀華;刁彥華;全貞花;;基于平板熱管的大功率LED照明散熱研究[J];工程熱物理學(xué)報;2010年09期
9 楊晶晶;劉永生;谷民安;彭麟;張玉鳳;高nI;;太陽能光伏電池冷卻技術(shù)研究[J];華東電力;2011年01期
10 欒偉玲,涂善東;溫差電技術(shù)的研究進(jìn)展[J];科學(xué)通報;2004年11期
本文編號:2034603
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2034603.html