薄壁板氣動彈性非線性振動的壓電俘能研究
發(fā)布時間:2018-06-16 08:43
本文選題:氣動彈性 + 多物理場耦合 ; 參考:《哈爾濱工業(yè)大學》2015年碩士論文
【摘要】:自然界中的流致振動無處不在,如何將無處不在的流致振動轉化為電能已經(jīng)成為當前的研究熱點。高速列車和飛行器飛行時,在氣動力作用下,列車和飛行器的壁板將產(chǎn)生氣動彈性振動;通常,該氣動彈性問題是有害的,應盡量避免,而壓電片將振動的機械能轉化為電能的同時會對壁板的振動產(chǎn)生抑制的作用,提高高速列車和飛行器的穩(wěn)定性。多個壓電俘能器聯(lián)合使用,可為微電子系統(tǒng)持續(xù)供電且增加列車和飛行器穩(wěn)定性。因此,本文在閱讀大量壁板振動和壓電俘能文獻后,針對壁板的氣動彈性非線性振動俘能進行一系列的理論計算、仿真和實驗研究。本文基于氣動彈性理論、振動理論、彈性力學、材料力學、壓電學和歐拉伯努利梁理論等相關知識,建立了懸臂壁板壓電俘能結構的線性數(shù)學模型和帶有非線性剛度、非線性慣性及非線性壓電項的懸臂壁板壓電俘能結構的非線性數(shù)學模型。基于前面所建立的非線性理論數(shù)學模型,進行數(shù)值計算,分析了不同風速、外接負載電阻、壓電片長度、壓電片厚度對懸臂壁板的氣動彈性振動和俘能特性的影響。另外,基于多物理場耦合的有限元仿真方法,分析了不同流速、外接負載電阻對曲面壁板振動和俘能的影響規(guī)律;并對壓電貼片位置和尺寸進行優(yōu)化分析和驗證。最終通過對風速,負載電阻,壓電貼片尺寸規(guī)格等因素分析發(fā)現(xiàn),在一定的風速下,合理選擇負載電阻和壓電貼片尺寸規(guī)格可以使其最大程度的兼顧減振效果最好,輸出功率最大和材料最大利用率。為了驗證前面建立的數(shù)學模型和有限元仿真的正確性,設計和制作了直流壓風式低速小型風洞,并編寫一套數(shù)據(jù)采集程序構成一個實驗系統(tǒng),采用該實驗系統(tǒng)對平板壁板和曲面壁板模進行實驗。對壁板的臨界顫振速度和俘能特性進行研究。實驗結果表明:無論是使用理論方法還是仿真方法,都能與實驗結果取得很好的一致性,驗證了本文理論分析方法的和仿真方法的正確性。
[Abstract]:Fluid-induced vibration is ubiquitous in nature. How to transform the ubiquitous fluid-induced vibration into electric energy has become a hot research topic. Aeroelastic vibration will occur in the walls of trains and aircraft when they are flying under aerodynamic force; usually, the Aeroelastic problem is harmful and should be avoided as far as possible. While the piezoelectric plate converts the mechanical energy of vibration into electric energy, it can restrain the vibration of the wall plate and improve the stability of high-speed train and aircraft. Combined use of multiple piezoelectric energy capture devices can continuously supply power to microelectronic systems and increase the stability of trains and aircraft. Therefore, after reading a large number of literature on the vibration and piezoelectric energy capture of panels, a series of theoretical calculations, simulations and experiments have been carried out for the Aeroelastic nonlinear vibration energy capture of panels. Based on Aeroelastic theory, vibration theory, elastic mechanics, material mechanics, piezoelectric theory and Euler Bernoulli beam theory, a linear mathematical model of cantilever wall plate piezoelectric energy structure with nonlinear stiffness is established. Nonlinear mathematical model of cantilever wall plate piezoelectric energy capture structure with nonlinear inertia and nonlinear piezoelectric term. Based on the mathematical model of nonlinear theory, the effects of different wind speed, external load resistance, length of piezoelectric plate and thickness of piezoelectric plate on the Aeroelastic vibration and energy capture characteristics of cantilever panels are analyzed. In addition, based on the multi-physical field coupling finite element simulation method, the influence of different velocity and external load resistance on the vibration and energy capture of the curved wall plate is analyzed, and the location and size of the piezoelectric patch are optimized and verified. Finally, through the analysis of wind speed, load resistance, size specification of piezoelectric patch and other factors, it is found that under certain wind speed, reasonable selection of load resistance and size specification of piezoelectric patch can make the maximum degree of vibration absorption effect the best. Maximum output power and maximum material utilization. In order to verify the correctness of the mathematical model and finite element simulation, a low-speed wind tunnel is designed and fabricated, and a data acquisition program is written to form an experimental system. The experimental system is used to test the plate and curved panel die. The critical flutter velocity and energy capture characteristics of the panel are studied. The experimental results show that both the theoretical method and the simulation method are in good agreement with the experimental results, and the correctness of the theoretical analysis method and the simulation method is verified.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TM619
【參考文獻】
相關期刊論文 前1條
1 冉玉國;劉會;張金梅;韓景龍;;大展弦比機翼的非線性氣彈響應分析[J];空氣動力學學報;2009年04期
,本文編號:2026087
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2026087.html