天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 電力論文 >

炭修飾鋰離子電池負極材料的設計及性能研究

發(fā)布時間:2018-06-15 18:08

  本文選題:鋰離子電池 + 負極 ; 參考:《大連理工大學》2014年博士論文


【摘要】:為了滿足節(jié)能環(huán)保的新能源汽車對鋰離子動力電池的需求,發(fā)展具有長循環(huán)穩(wěn)定性、高可逆容量、良好的安全性能和快速充放電能力的電極材料成為當務之急。根據(jù)電極中活性物質(zhì)的電化學特性定向設計合適的結構以提高鋰離子電池的電化學性能,尤其是循環(huán)穩(wěn)定性,是一個具有挑戰(zhàn)性的研究課題。鑒于炭材料在能量儲存方面的優(yōu)勢,本論文以納米電極材料的結構設計為導向,制備一系列多孔炭修飾的金屬氧化物/硫化物復合負極材料,旨在提高鋰離子電池負極材料的循環(huán)穩(wěn)定性,在此基礎上,研究材料的結構特點對其電化學性能和反應機理的影響。具體包括如下幾個方面: (1)針對Sn02負極材料在充放電過程中體積膨脹大(250%)和導電性低的問題,以薄壁(-2nm)高孔容(2.16cm3g-1)的管狀介孔炭為載體,構筑Sn02顆粒尺寸5nm的Sn02@C復合材料。對Sn02在炭孔道中的填充度進行調(diào)變,調(diào)變范圍為7-27%。當Sn02的負載量高達80wt%時,Sn02納米顆粒還能高度分散于炭載體的介孔孔道中,且無團聚現(xiàn)象發(fā)生。這種管狀復合材料表現(xiàn)出高的可逆容量和穩(wěn)定的循環(huán)性能,經(jīng)過100次循環(huán)后,可逆容量為1039mAh g-1,容量保持率為106%。其穩(wěn)定后的容量高于Sn02的傳統(tǒng)理論容量(782mAhg-1),這可能歸因于在充放電過程中Sn02與Sn之間發(fā)生了可逆的轉化反應。 (2)為了從本質(zhì)上降低Sn02的體積膨脹,將體積變化相對較小的ZnO(體積膨脹:103%)引入到Sn02體相中,制備出ZnSn03(體積膨脹:-191%)負極材料。同時,結合炭材料的優(yōu)勢,設計合成了核殼結構的炭包覆ZnSnO3(ZnSnO3@C)納米方塊。其中,ZnSnO3方塊的尺寸為37nm,具有無定形結構和豐富的介孔孔道;外部的炭層相互交聯(lián),構成連續(xù)的電子導通骨架和相互貫通的大孔通道(74nm)。電化學測試結果表明,ZnSnO3@C復合物的儲鋰反應綜合了合金反應和轉化反應的特點(Li4.4Sn與LiZn合金可逆地轉變?yōu)槌跏嫉?ZnSnO3),因而可以提供高的可逆容量。經(jīng)過100次循環(huán)后,可逆容量達到1060mAh g-,并且其容量保持率為93%。 (3)考慮到電極/電解液表界面的穩(wěn)定性問題,以過渡金屬氧化物Fe2O3為研究對象,探索了提高界面穩(wěn)定性的方法。為了獲取穩(wěn)定的固體電解質(zhì)界面(SEI)膜,根據(jù)各組分的不同功能,采用納米工程技術將Fe203納米顆粒、管狀介孔炭載體和導電聚吡咯分層次地組裝在一起,構筑了一種多功能復合負極材料。在復合物中,Fe203高度分散于炭載體中,同時導電聚吡咯均勻地包覆在Fe203@C的孔道口和外表面,將Fe2O3@C顆粒橋接起來構成一個大的單元。作為鋰離子電池負極材料,聚吡咯包覆的Fe2O3@C表現(xiàn)出穩(wěn)定的循環(huán)性能,100次循環(huán)后,容量保持率高達97%。另外,復合材料還具有快速的充放電速度、高的Fe203利用率和大的體積比容量。 (4)以負載于管狀介孔炭中的硫為起始物質(zhì),銅箔代替?zhèn)鹘y(tǒng)的鋁箔作為集流體,依靠恒流充放電過程中的電化學反應在管狀介孔炭中原位生成Cu2S納米顆粒。對反應機理進行研究發(fā)現(xiàn):S顆粒與Li+反應生成的Li2Sn溶解于電解液中變?yōu)镾n2-,來自于銅箔的Cu+會與Sn2-反應生成難溶性的CuxS中間產(chǎn)物,隨著循環(huán)次數(shù)的增加,CuxS逐漸轉變?yōu)樽罱K的Cu2S產(chǎn)物,得到高度分散于管狀介孔炭中的Cu2S。這種原位制備的Cu2S/C復合材料表現(xiàn)出穩(wěn)定的循環(huán)性能和優(yōu)異的倍率性能。在0.2C下循環(huán)300次,可逆容量為270mAh g-1,容量保持率為104%。在10C的大電流密度下,可逆容量保持在225mAhg-1左右,是0.2C下可逆容量的86%。
[Abstract]:In order to meet the needs of energy saving and environment-friendly energy vehicles for lithium ion batteries, it is urgent to develop the electrode materials with long cycle stability, high reversible capacity, good safety performance and fast charging and discharging capacity. The design of suitable structure to improve the lithium ion battery according to the electrochemical characteristics of active substances in the electrode The electrochemical performance, especially the cyclic stability, is a challenging research topic. In view of the advantages of carbon materials in energy storage, this paper is guided by the structure design of nanomaterials. A series of porous carbon modified metal oxide / sulfide composite negative materials are prepared to improve the anode of lithium ion batteries. Based on the cyclic stability of materials, the effects of structural characteristics of materials on their electrochemical properties and reaction mechanism are studied.
(1) aiming at the problem of large volume expansion (250%) and low conductivity of Sn02 negative electrode in charge and discharge process, a Sn02@C composite with Sn02 particle size 5nm is constructed with thin-walled (-2nm) high pore volume (2.16cm3g-1) tubular mesoporous carbon as carrier. The filling degree of Sn02 in the carbon channel is adjusted and the adjustment range is 7-27%. when the load of Sn02 is as high as 80W. At t%, Sn02 nanoparticles can also be highly dispersed in mesoporous pore channels of carbon carriers, and no aggregation occurs. This tubular composite exhibits high reversible capacity and stable cycling performance. After 100 cycles, the reversible capacity is 1039mAh g-1, and the capacity retention rate is 106%. with the traditional theoretical capacity of higher than Sn02 (78). 2mAhg-1), which may be attributed to the reversible conversion reaction between Sn02 and Sn in charge discharge process.
(2) in order to reduce the volume expansion of Sn02 in essence, the ZnO (volume expansion: 103%), which has a relatively small volume change, is introduced into the Sn02 body phase and the ZnSn03 (volume expansion: -191%) negative electrode is prepared. At the same time, the carbon coated ZnSnO3 (ZnSnO3@C) nano block of the nuclear shell structure is designed and synthesized by combining the advantages of the carbon material. Among them, the ruler of the ZnSnO3 square block is designed. The 37nm has an amorphous structure and a rich mesoporous channel, and the external carbon layers cross linked together to form a continuous electronic conduction skeleton and a large pore channel (74nm). The electrochemical test results show that the lithium storage reaction of the ZnSnO3@C complex synthesizes the characteristics of the alloy reaction and the conversion reaction (Li4.4Sn and LiZn alloy reversible transformation. For the initial 2ZnSnO3, it can provide high reversible capacity. After 100 cycles, the reversible capacity reaches 1060mAh g-, and its capacity retention rate is 93%.
(3) taking into account the stability of the electrode / electrolyte surface interface, a method for improving the stability of the interface is explored with the transition metal oxide Fe2O3 as the research object. In order to obtain a stable solid electrolyte interface (SEI) film, Fe203 nanoparticles, tubular mesoporous carbon carriers and conductance are used in accordance with the different functions of each component. Polypyrrole is assembled together to construct a multi-functional composite negative material. In the complex, the Fe203 is highly dispersed in the carbon carrier. At the same time, the conductive polypyrrole is evenly coated on the orifice and the outer surface of the Fe203@C, and the Fe2O3@C particles are bridged to form a large unit. As a anode material for lithium ion batteries, polypyrrole (PPy) The coated Fe2O3@C shows a stable cycle performance. After 100 cycles, the capacity retention rate is up to 97%., and the composite also has rapid charge discharge speed, high Fe203 utilization and large volume specific capacity.
(4) the sulfur in the tubular mesoporous carbon is used as the starting material, and the copper foil is replaced by the traditional aluminum foil as the collector. The Cu2S nanoparticles are produced in situ by the electrochemical reaction in the constant current charge discharge process. The reaction mechanism was studied. The reaction of the S particles and the Li+ reaction was found to be dissolved in the electrolyte to Sn2-, The Cu+ from copper foil reacts with Sn2- to produce insoluble CuxS intermediates. With the increase of the number of cycles, CuxS gradually transforms into the final Cu2S product, and the Cu2S., which is highly dispersed in the tubular mesoporous carbon, has a stable cycling performance and excellent multiplier performance. 300 cycles under 0.2C are circulate under 0.2C. The reversible capacity is 270mAh g-1, and the capacity holding rate is 104%.. Under the high current density of 10C, the reversible capacity remains at 225mAhg-1, which is 86%. under the reversible capacity of 0.2C.
【學位授予單位】:大連理工大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TM912

【參考文獻】

相關期刊論文 前5條

1 吳超;崔永麗;莊全超;徐守冬;沈明芳;史月麗;孫智;;基于轉化反應機制的鋰離子電池電極材料研究進展[J];化學通報;2011年11期

2 韓飛;陸安慧;李文翠;;結構可控的炭基材料在鋰離子電池中的應用[J];化學進展;2012年12期

3 曾耀明;史忠良;;中外新能源汽車產(chǎn)業(yè)政策對比分析[J];企業(yè)經(jīng)濟;2011年02期

4 高文超;黃桃;沈宇棟;余愛水;;酚醛樹脂包覆氧化天然石墨作為鋰離子電池負極材料[J];物理化學學報;2011年09期

5 黃彥瑜;;鋰電池發(fā)展簡史[J];物理;2007年08期

,

本文編號:2023012

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2023012.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶62efd***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
日本午夜乱色视频在线观看| 国产精品白丝久久av| 日韩一区二区免费在线观看| 亚洲熟女精品一区二区成人| 亚洲欧美国产网爆精品| 婷婷伊人综合中文字幕| 欧美日韩精品一区二区三区不卡| 亚洲男女性生活免费视频| 国产女高清在线看免费观看| 欧美一级内射一色桃子| 欧美日韩亚洲综合国产人| 国产精品成人一区二区三区夜夜夜 | 国产精品午夜小视频观看| 精品欧美一区二区三久久| 成人国产激情在线视频| 国产又黄又爽又粗视频在线| 在线观看中文字幕91| 精品熟女少妇av免费久久野外| 中文字幕精品人妻一区| 亚洲综合色婷婷七月丁香| 国产精品日韩精品最新| 欧美日韩在线观看自拍| 久久精品偷拍视频观看| 欧美成人国产精品高清| 亚洲一区二区久久观看| 四季av一区二区播放| 国产在线一区中文字幕 | 九九热在线免费在线观看| 欧美日韩亚洲精品内裤| 国产熟女一区二区精品视频| 日本精品免费在线观看| 久久精品国产一区久久久| 亚洲精品成人综合色在线| 亚洲中文字幕剧情在线播放| 中文字幕亚洲视频一区二区| 国产不卡视频一区在线| 久久re6热在线视频| 成人精品亚洲欧美日韩| 国产成人午夜av一区二区| 亚洲国产精品一区二区毛片| 国产精品色热综合在线|