電力系統(tǒng)低頻振蕩非線性機理及控制策略研究
發(fā)布時間:2018-06-13 09:14
本文選題:電力系統(tǒng) + 低頻振蕩; 參考:《華北電力大學》2015年碩士論文
【摘要】:電網(wǎng)安全穩(wěn)定供電是保證國家經(jīng)濟穩(wěn)步增長的必要條件,然而隨著電網(wǎng)規(guī)模的擴大和工作環(huán)境的逐漸惡化,互聯(lián)電網(wǎng)間的搖擺振蕩為電力系統(tǒng)帶來更嚴峻的考驗。其中,電力系統(tǒng)低頻振蕩是常見振蕩類型之一,為抑制和控制低頻振蕩,探明其產(chǎn)生機理是一項重要研究內(nèi)容。作為典型多變量非線性動態(tài)系統(tǒng),電力系統(tǒng)具有復雜的非線性動力學行為,系統(tǒng)自身的非線性物理特性是低頻振蕩的重要誘因之一。本文研究重點就是將混沌理論運用于電力系統(tǒng),通過理論分析和模擬仿真,探索誘發(fā)電力系統(tǒng)低頻振蕩的非線性機理、分析系統(tǒng)混沌時的低頻振蕩特性并利用混沌控制方法實現(xiàn)電力系統(tǒng)低頻振蕩控制。論文首先從分岔和混沌角度綜述了低頻振蕩非線性機理相關的研究成果。在探討不同維數(shù)系統(tǒng)的建模方法后,以單機無窮大系統(tǒng)為代表,采用四階龍格-庫塔法為描述系統(tǒng)動態(tài)過程的微分方程求得數(shù)值解,得到系統(tǒng)功角的最大Lyapunov指數(shù)譜及分岔圖以揭示擾動功率強度及阻尼參數(shù)對混沌特性的影響,并對典型分岔參數(shù)取值下系統(tǒng)的時序圖、相圖進行分析,展現(xiàn)非線性系統(tǒng)分岔、混沌進程中與電力系統(tǒng)低頻振蕩對應的單模式、多模式、失穩(wěn)等現(xiàn)象。將常用的兩種低頻振蕩分析方法——滑窗FFT法和Prony法用于混沌狀態(tài)下系統(tǒng)振蕩頻率、振蕩幅值、衰減系數(shù)等低頻振蕩特性值的求解。在充分掌握系統(tǒng)特性之后,利用不同控制方法分別對二維和四維混沌系統(tǒng)進行控制,以此抑制混沌導致的低頻振蕩,仿真分析證明本文所設計控制器能夠消除電力系統(tǒng)混沌進而抑制低頻振蕩,將系統(tǒng)控制到穩(wěn)定狀態(tài)。
[Abstract]:The safe and stable power supply is a necessary condition to ensure the steady growth of national economy. However, with the expansion of the scale of the power network and the deterioration of the working environment, the swing oscillation between the interconnected power grids brings a more severe test to the power system. The low frequency oscillation of power system is one of the common oscillation types. In order to suppress and control the low frequency oscillation, it is an important research content to find out the mechanism of the low frequency oscillation. As a typical multivariable nonlinear dynamic system, power system has complex nonlinear dynamic behavior. The nonlinear physical characteristics of the system itself is one of the important inducements of low frequency oscillation. The key point of this paper is to apply chaos theory to power system. Through theoretical analysis and simulation, the nonlinear mechanism of inducing low frequency oscillation in power system is explored. The characteristic of low frequency oscillation in chaotic system is analyzed and the low frequency oscillation control of power system is realized by means of chaos control method. In this paper, the research results of nonlinear mechanism of low frequency oscillation are summarized from bifurcation and chaos. After discussing the modeling methods of different dimensional systems, the numerical solution is obtained by using the fourth order Runge-Kutta method as the differential equation to describe the dynamic process of the system, taking the single-machine infinite bus system as the representative. The maximum Lyapunov exponent spectrum and bifurcation diagram of the power angle of the system are obtained to reveal the influence of the disturbance power intensity and damping parameters on the chaotic characteristics. The timing diagram and phase diagram of the system are analyzed under the typical bifurcation parameters to show the bifurcation of the nonlinear system. Single mode, multi-mode, instability and other phenomena corresponding to low frequency oscillation in power system in chaotic process. Two common low-frequency oscillation analysis methods, the sliding window FFT method and the Prony method, are used to solve the low frequency oscillation characteristic values such as the oscillation frequency, the oscillation amplitude and the attenuation coefficient. After fully grasping the characteristics of the system, the two-dimensional and four-dimensional chaotic systems are controlled by different control methods to suppress the low frequency oscillation caused by chaos. The simulation results show that the controller designed in this paper can eliminate the chaos of the power system and suppress the low frequency oscillation, which can control the system to a stable state.
【學位授予單位】:華北電力大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TM712
【參考文獻】
相關期刊論文 前2條
1 檀斌,薛禹勝;多機系統(tǒng)混沌現(xiàn)象的研究[J];電力系統(tǒng)自動化;2001年02期
2 宋墩文;楊學濤;丁巧林;馬世英;李柏青;王青;;大規(guī)模互聯(lián)電網(wǎng)低頻振蕩分析與控制方法綜述[J];電網(wǎng)技術;2011年10期
,本文編號:2013503
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2013503.html