電動(dòng)汽車用磁阻式旋轉(zhuǎn)變壓器的設(shè)計(jì)研究
本文選題:磁阻式旋轉(zhuǎn)變壓器 + 凸極轉(zhuǎn)子。 參考:《天津大學(xué)》2014年碩士論文
【摘要】:隨著科學(xué)技術(shù)不斷進(jìn)步,環(huán)境問(wèn)題越來(lái)越突出的影響著人類的生活,節(jié)能、環(huán)保、高效是對(duì)當(dāng)今一切工業(yè)技術(shù)提出的新要求。電動(dòng)汽車由于使用電力這種清潔能源,不排放污染大氣的有害氣體,并且不需要消耗日漸枯竭的石油資源,成為各國(guó)大力推廣的新能源車輛。旋轉(zhuǎn)變壓器作為角度位置傳感器具有穩(wěn)定可靠、精度高、耐潮濕、耐高溫、抗震動(dòng)等優(yōu)點(diǎn),在其基礎(chǔ)上發(fā)展起來(lái)的磁阻式旋轉(zhuǎn)變壓器不僅繼承了傳統(tǒng)旋變的優(yōu)點(diǎn),還具有結(jié)構(gòu)簡(jiǎn)單、體積輕巧和極高的可靠性,最適合作為電動(dòng)車用永磁電機(jī)的位置/速度傳感器。以目前情況看來(lái),幾乎沒(méi)有文獻(xiàn)對(duì)磁阻式旋轉(zhuǎn)變壓器的電磁設(shè)計(jì)程序做出完整的表述,大多研究是針對(duì)產(chǎn)生誤差的因素進(jìn)行分析。而且設(shè)計(jì)中只能盡量避免可能造成誤差的因素,實(shí)際精度還要受到嵌線工藝和裝配精度的影響。針對(duì)這些情況,本文首先深入分析了磁阻式旋轉(zhuǎn)變壓器的工作原理和電磁特性,并總結(jié)出一套磁阻式旋變的設(shè)計(jì)方法,找到了轉(zhuǎn)子初步設(shè)計(jì)中關(guān)鍵參數(shù)的最佳取值,為今后的設(shè)計(jì)工作提供了參考和便利,具有重要的工程實(shí)踐意義。其次,為進(jìn)一步提高測(cè)量精度,對(duì)初步設(shè)計(jì)的磁阻式旋變做了參數(shù)優(yōu)化。在定子設(shè)計(jì)中加入輔助槽結(jié)構(gòu),探討輔助槽數(shù)和輔助槽深對(duì)削弱氣隙中諧波含量的影響;通過(guò)反復(fù)迭代對(duì)比,找到了轉(zhuǎn)子外緣的最佳形狀;結(jié)合實(shí)際情況探討下線錯(cuò)誤時(shí)可能的輸出結(jié)果,并考慮用波繞組的形式代替疊繞組作為激磁線圈的繞線形式,分析兩種嵌線工藝各自的利弊。最后,依據(jù)本文所述的設(shè)計(jì)方法自行設(shè)計(jì)一臺(tái)三對(duì)極旋變,并制成樣機(jī)進(jìn)行實(shí)驗(yàn)驗(yàn)證。在檢驗(yàn)其能夠正常工作之后,就實(shí)驗(yàn)中出現(xiàn)的不理想情況進(jìn)行分析對(duì)比,說(shuō)明工程操作也是保證旋變測(cè)量精度一個(gè)重要因素。
[Abstract]:With the continuous progress of science and technology, environmental problems are becoming more and more important to human life. Energy saving, environmental protection and high efficiency are the new requirements for all industrial technologies. Electric vehicles, because of the use of clean energy, do not discharge harmful gases that pollute the atmosphere, and do not need to depleting the depleted oil resources. The rotating transformer as angle position sensor has the advantages of stable reliability, high precision, high temperature resistance, high temperature resistance and anti vibration. The magnetoresistance rotary transformer, which is developed on the basis of the angle position sensor, not only inherits the advantages of traditional rotation, but also has simple structure, lightweight and extremely high reliability. As the position / speed sensor of permanent magnet motor for electric vehicles, there is little literature on the electromagnetic design program of the magnetoresistance transformer in the present situation. Most of the research is aimed at the analysis of the factors that produce errors. Moreover, we can only avoid the factors that may cause errors and the actual precision in the design. In view of these conditions, the working principle and electromagnetic characteristics of the magnetoresistance rotary transformer are analyzed in this paper, and a design method of the magnetoresistance type rotation is summarized, and the best value of the key parameters in the initial design of the rotor is found, which provides reference for the future design work. Secondly, in order to further improve the precision of the measurement, the parameter optimization of the preliminary designed magnetoresistance is done. The auxiliary slot structure is added to the stator design, and the influence of the number of auxiliary slots and the auxiliary groove depth on the weakening of the harmonic content in the air gap is discussed. The optimum outer edge of the rotor is found through repeated iteration. According to the actual situation, the possible output results are discussed in the light of the actual situation, and the winding form is used to replace the superimposed winding as the winding form of the magnetizing coil, and the advantages and disadvantages of the two lines are analyzed. Finally, a three pair of polar rotation is designed according to the design method described in this paper, and an experimental verification is made to make a prototype. After testing its normal work, the analysis and comparison of the undesirable conditions in the experiment show that the engineering operation is also an important factor to ensure the accuracy of rotation measurement.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM383.2;U469.72
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 羅有成;;多極旋轉(zhuǎn)變壓器無(wú)觸點(diǎn)切換電路[J];控制微電機(jī);1979年04期
2 朱青;無(wú)接觸旋轉(zhuǎn)變壓器[J];電工技術(shù)雜志;1983年02期
3 本刊通訊員;;雙通道細(xì)分式旋轉(zhuǎn)變壓器在南京通過(guò)鑒定[J];微特電機(jī);1986年04期
4 沈祝山,楊篤偉,楊東升;數(shù)字/旋轉(zhuǎn)變壓器轉(zhuǎn)換模塊及其外圍電路設(shè)計(jì)[J];電子技術(shù)應(yīng)用;2001年01期
5 趙金,劉永江,萬(wàn)淑蕓;基于旋轉(zhuǎn)變壓器的永磁同步電機(jī)驅(qū)動(dòng)技術(shù)研究[J];電力電子技術(shù);2004年01期
6 張文海;分裝式多極旋轉(zhuǎn)變壓器組裝中的一些問(wèn)題[J];微特電機(jī);2004年08期
7 姜燕平;旋轉(zhuǎn)變壓器原理及其應(yīng)用[J];電氣時(shí)代;2005年10期
8 張文海;;高頻旋轉(zhuǎn)變壓器正、余弦輸出共地影響分析[J];電氣試驗(yàn);2005年02期
9 姜燕平;;旋轉(zhuǎn)變壓器原理及其在自動(dòng)控制中的應(yīng)用[J];國(guó)內(nèi)外機(jī)電一體化技術(shù);2005年06期
10 張力;趙春華;;提高旋轉(zhuǎn)變壓器角度測(cè)量精度的細(xì)分方法[J];三峽大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年04期
相關(guān)重要報(bào)紙文章 前1條
1 記者 陶婷婷;樸實(shí)中透露的執(zhí)著[N];上?萍紙(bào);2011年
相關(guān)碩士學(xué)位論文 前10條
1 馬林;基于雙傳感器炮塔動(dòng)態(tài)轉(zhuǎn)角測(cè)量方法的研究[D];西安工業(yè)大學(xué);2013年
2 左文臻;基于雙通道旋轉(zhuǎn)變壓器的位置編碼器設(shè)計(jì)[D];東南大學(xué);2015年
3 冀睿琳;電動(dòng)汽車用磁阻式旋轉(zhuǎn)變壓器的設(shè)計(jì)研究[D];天津大學(xué);2014年
4 許興斗;高頻、高精度雙通道旋轉(zhuǎn)變壓器的設(shè)計(jì)與信號(hào)處理[D];上海交通大學(xué);2008年
5 鄒旭;旋轉(zhuǎn)變壓器信號(hào)處理與設(shè)計(jì)[D];華中科技大學(xué);2008年
6 陳暉;超薄型旋轉(zhuǎn)變壓器制造新工藝的研究[D];西安電子科技大學(xué);2010年
7 齊少敏;電子式旋轉(zhuǎn)變壓器的研究與實(shí)現(xiàn)[D];南京航空航天大學(xué);2002年
8 劉學(xué)軍;高精度雙通道旋轉(zhuǎn)變壓器—變送器的設(shè)計(jì)與實(shí)現(xiàn)[D];南京航空航天大學(xué);2010年
9 儲(chǔ)海燕;旋轉(zhuǎn)變壓器信號(hào)處理電路的設(shè)計(jì)與實(shí)現(xiàn)[D];西安電子科技大學(xué);2011年
10 劉彥良;旋轉(zhuǎn)變壓器初始位置標(biāo)定系統(tǒng)開(kāi)發(fā)[D];吉林大學(xué);2015年
,本文編號(hào):2003615
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/2003615.html