氧化釩與導(dǎo)電聚合物電化學(xué)復(fù)合及超電容應(yīng)用
本文選題:氧化釩 + 聚苯胺。 參考:《東北大學(xué)》2014年博士論文
【摘要】:超級(jí)電容器是高功率密度的新型儲(chǔ)能器件,提高能量密度是提高其性能的關(guān)鍵。擴(kuò)展超級(jí)電容器電極材料儲(chǔ)能電位窗可有效提高電容器工作電壓,進(jìn)而大幅度提高電容器能量密度。本文利用氧化釩(V2O5)與導(dǎo)電聚合物原位電化學(xué)復(fù)合,制備了具有高儲(chǔ)能電位窗的無機(jī)-有機(jī)復(fù)合超級(jí)電容器電極材料,并組裝了模擬超級(jí)電容器,探討其儲(chǔ)能應(yīng)用。為了進(jìn)一步改善電容器性能,還嘗試了組裝非對(duì)稱型超級(jí)電容器。無機(jī)-有機(jī)復(fù)合既可綜合無機(jī)組分與有機(jī)組分優(yōu)勢(shì),又可誘導(dǎo)無機(jī)-有機(jī)協(xié)同效應(yīng),對(duì)發(fā)展新型儲(chǔ)能材料很有意義。本文首先在含有0.1 M苯胺和0.05、0.1、0.2、0.3、0.4及0.5 M VOSO4的溶液中,利用苯胺電化學(xué)聚合和V205電化學(xué)沉積,進(jìn)行聚苯胺(PANI)和V2O5的電化學(xué)共沉積,制備V2O5-PANI復(fù)合膜VP-0.5、VP-1、VP-2、VP-3、VP-4和VP-5。利用X-射線衍射(XRD)研究V2O5的晶型,利用紅外光譜(FT-IR)研究V2O5和PANI的振動(dòng)吸收。利用掃描電子顯微鏡(SEM)觀測(cè)V2O5-PANI復(fù)合膜的形貌,發(fā)現(xiàn)與V2O5電化學(xué)共沉積有助于PANI的一維生長(zhǎng),分析了電化學(xué)沉積溶液中硫酸氧釩濃度對(duì)復(fù)合膜形貌的影響。利用循環(huán)伏安、恒電流充放電和交流阻抗技術(shù)研究了V2O5-PANI的電化學(xué)性能,發(fā)現(xiàn)得益于無機(jī)-有機(jī)復(fù)合,V2O5-PANI的儲(chǔ)能電位窗擴(kuò)展至1.6 V (-0.9~0.7 V vs. SCE)。V2O5-PANI以納米棒形式存在時(shí),有利于電極活性物質(zhì)與電解液接觸,進(jìn)而充分發(fā)揮儲(chǔ)能性能,在5 M LiCl溶液中,以0.5 mA/cm2的電流密度充放電時(shí),VP-1比電容達(dá)443 F/g,遠(yuǎn)高于類似條件下制備的V2O5 (217 F/g)和PANI (241 F/g)。然后在含有0.1 M LiClO4、0.1M VOSO4的PBS溶液中(pH=6.86)分別加入吡咯使其濃度分別為0.1、0.05、0.03、0.025和0.02 M,在0.7 V電位下進(jìn)行吡咯的電化學(xué)聚合及V205電化學(xué)沉積,制備V2O5-聚吡咯(PPy)復(fù)合膜VPy-1、 VPy-2、VPy-3、VPy-4和VPy-5。利用XRD研究V2O5-PPy上V2O5的晶型,利用FT-IR研究V2O5和PPy的振動(dòng)吸收特征峰。利用SEM觀測(cè)了V2O5-PPy的形貌,發(fā)現(xiàn)V205對(duì)PPy也有一維生長(zhǎng)誘導(dǎo)作用。利用循環(huán)伏安、恒電流充放電和交流阻抗技術(shù)研究了V2O5-PPy的電化學(xué)性能。V2O5-PPy上的PPy可發(fā)生陰陽離子雙摻雜,因此V2O5-PPy復(fù)合膜的儲(chǔ)能電位窗高的2.0V(-1.4-0.6 V vs. SCE)。以一維結(jié)構(gòu)存在有利于V2O5-PPy上活性物質(zhì)與電解液接觸,進(jìn)而充分發(fā)揮儲(chǔ)能性能,其中VPy-3在5 M LiCl溶液中,以4.5 mA/cm2的電流密度充放電時(shí),比電容達(dá)412 F/g,遠(yuǎn)高于類似條件下制備的V2O5 (181 F/g)和PPy (257 F/g).以LiCl/PVA凝膠為電解質(zhì),分別以V2O5-PANI復(fù)合膜VP-1和V2O5-PPy復(fù)合膜VPy-3組裝了對(duì)稱型超級(jí)電容器VP-1//VP-1和VPy-3//VPy-3。利用循環(huán)伏安和恒電流充放電實(shí)驗(yàn)測(cè)試了電容器性能。得益于電極材料的高儲(chǔ)能電位窗,VP-1//VP-1可在1.6 V的高電壓下工作,因此能量密度大大提高,可達(dá)69Wh/kg。并表現(xiàn)出優(yōu)越的循環(huán)穩(wěn)定性,5000次充放電后,電容維持率達(dá)92%。VPy-3//VPy-3工作電壓進(jìn)一步提高,達(dá)2.0 V,能量密度則高達(dá)82 Wh/kg。 5000次充放電后,電容維持率為80%。VP-1//VP-1和VPy-3//VPy-3均表現(xiàn)出優(yōu)越的柔韌性,電容器彎曲0°、60°、120°和180°角度后,比電容基本不受影響。在0.05 M RuCl3·H2O、0.1M KCl、0.01 M HCl和0.05M NH4Ac溶液中,電化學(xué)沉積Ru02薄膜。以RuO2為正極,分別以VP-1和VPy-3為負(fù)極,組裝非對(duì)稱型超級(jí)電容器VP-1//RuO2和VPy-3//RuO2。VP-1//RuO2和VPy-3//RuO2工作電壓均可高達(dá)2.0 V,其能量密度分別為83.3 Wh/kg和91Wh/kg,5000次充放電后,電容保持率分別為90%和86%。
[Abstract]:Supercapacitor is a new type of energy storage device with high power density. Increasing the energy density is the key to improve its performance. The expansion of the electric potential window of the supercapacitor electrode material can effectively improve the working voltage of the capacitor and greatly increase the energy density of the capacitor. In this paper, the V2O5 and the conductive polymer in situ electrochemical combination are made. An inorganic organic composite supercapacitor electrode material with a high energy storage potential window was prepared, and an analog supercapacitor was assembled to discuss its energy storage application. In order to further improve the performance of the capacitor, an unsymmetrical supercapacitor was assembled. The organic synergistic effect is of great significance to the development of new energy storage materials. First, in the solution containing 0.1 M aniline and 0.05,0.1,0.2,0.3,0.4 and 0.5 M VOSO4, electrochemical copolymerization of aniline and V205 electrochemical deposition was used to prepare the electrochemical co deposition of polyaniline (PANI) and V2O5 to prepare VP-0.5, VP-1, VP-2, VP-3, VP-3, VP-3, VP-2, and V2O5. P-5. uses X- ray diffraction (XRD) to study the crystalline form of V2O5 and uses the infrared spectroscopy (FT-IR) to study the vibration absorption of V2O5 and PANI. The morphology of the V2O5-PANI composite film is observed by scanning electron microscope (SEM). It is found that the electrochemical co deposition with V2O5 is helpful to PANI one-dimensional growth, and the compound membrane form of the concentration of vanadium sulfate in the electrochemical deposition solution is analyzed. The electrochemical performance of V2O5-PANI was studied by cyclic voltammetry, constant current charge discharge and AC impedance technique. It was found that the energy storage potential window of V2O5-PANI expanded to 1.6 V (-0.9 ~ 0.7 V vs. SCE).V2O5-PANI in the form of nanorods, which was beneficial to the contact between the electrode active substance and the electrolyte. In the 5 M LiCl solution, the VP-1 specific capacitance is 443 F/g when the current density is 0.5 mA/cm2, which is much higher than that of V2O5 (217 F/g) and PANI (241 F/g) prepared under similar conditions. 0.02 M, the electrochemical polymerization of pyrrole and V205 electrochemical deposition at 0.7 V potential were used to prepare the V2O5- polypyrrole (PPy) composite membrane VPy-1, VPy-2, VPy-3, VPy-4 and VPy-5.. By means of cyclic voltammetry, cyclic voltammetry, constant current charge discharge and AC impedance technique, the PPy on the electrochemical performance of V2O5-PPy can be doped with both yin and yang ions, so the energy storage potential window of the V2O5-PPy composite membrane is high in 2.0V (-1.4-0.6 V vs. SCE). The existence of one dimension structure is beneficial to the active substance and electrolysis on V2O5-PPy. In 5 M LiCl solution, the specific capacitance of VPy-3 is 412 F/g, which is much higher than that of V2O5 (181 F/g) and PPy (257 F/g) under similar conditions. The LiCl/PVA gel is the electrolyte, and the V2O5-PANI composite membrane VP-1 and the composite membrane are assembled to assemble symmetry, respectively. The type supercapacitors VP-1//VP-1 and VPy-3//VPy-3. test the performance of the capacitor by cyclic voltammetry and constant current charge discharge experiments. Thanks to the high energy storage potential window of the electrode material, the VP-1//VP-1 can work at 1.6 V high voltage, so the energy density is greatly improved, and it can reach 69Wh/kg. and show the superior cycle stability and 5000 charge discharge. After the 92%.VPy-3//VPy-3 operating voltage is further increased to 2 V and the energy density is up to 82 Wh/kg. 5000 times, the capacitor maintenance rate is superior to 80%.VP-1//VP-1 and VPy-3//VPy-3. After the capacitor is bent 0, 60, 120 and 180 degrees, the capacitance is basically unaffected. In 0.05 M RuCl3 H2O 0.1M KCl, 0.01 M HCl and 0.05M NH4Ac solution, electrochemical deposition of Ru02 film. RuO2 as the positive pole, VP-1 and VPy-3 as negative poles respectively, the assembly of asymmetric supercapacitor VP-1//RuO2 and VPy-3//RuO2.VP-1//RuO2 and operating voltage can be up to 2, the energy density is 83.3, respectively, after the 5000 charge discharge, electricity. The retention rate is 90% and 86%., respectively.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM53;O646.54
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 許開卿;吳季懷;范樂慶;冷晴;鐘欣;蘭章;黃妙良;林建明;;水凝膠聚合物電解質(zhì)超級(jí)電容器研究進(jìn)展[J];材料導(dǎo)報(bào);2011年15期
2 梓文;;超高能超級(jí)電容器[J];兵器材料科學(xué)與工程;2013年04期
3 ;歐盟創(chuàng)新型大功率超級(jí)電容器問世[J];功能材料信息;2014年01期
4 周霞芳;;無污染 充電快 春節(jié)后有望面市 周國(guó)泰院士解密“超級(jí)電容器”[J];環(huán)境與生活;2012年01期
5 江奇,瞿美臻,張伯蘭,于作龍;電化學(xué)超級(jí)電容器電極材料的研究進(jìn)展[J];無機(jī)材料學(xué)報(bào);2002年04期
6 朱修鋒,王君,景曉燕,張密林;超級(jí)電容器電極材料[J];化工新型材料;2002年04期
7 景茂祥,沈湘黔,沈裕軍,鄧春明,翟海軍;超級(jí)電容器氧化物電極材料的研究進(jìn)展[J];礦冶工程;2003年02期
8 朱磊,吳伯榮,陳暉,劉明義,簡(jiǎn)旭宇,李志強(qiáng);超級(jí)電容器研究及其應(yīng)用[J];稀有金屬;2003年03期
9 賀福;碳(炭)材料與超級(jí)電容器[J];高科技纖維與應(yīng)用;2005年03期
10 鄧梅根,楊邦朝,胡永達(dá);卷繞式活性炭纖維布超級(jí)電容器的研究[J];功能材料;2005年08期
相關(guān)會(huì)議論文 前10條
1 馬衍偉;張熊;余鵬;陳堯;;新型超級(jí)電容器納米電極材料的研究[A];2009中國(guó)功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
2 張易寧;何騰云;;超級(jí)電容器電極材料的最新研究進(jìn)展[A];第二十八屆全國(guó)化學(xué)與物理電源學(xué)術(shù)年會(huì)論文集[C];2009年
3 鐘輝;曾慶聰;吳丁財(cái);符若文;;聚苯乙烯基層次孔碳的活化及其在超級(jí)電容器中的應(yīng)用[A];中國(guó)化學(xué)會(huì)第15屆反應(yīng)性高分子學(xué)術(shù)討論會(huì)論文摘要預(yù)印集[C];2010年
4 趙家昌;賴春艷;戴揚(yáng);解晶瑩;;扣式超級(jí)電容器組的研制[A];第十二屆中國(guó)固態(tài)離子學(xué)學(xué)術(shù)會(huì)議論文集[C];2004年
5 單既成;陳維英;;超級(jí)電容器與通信備用電源[A];通信電源新技術(shù)論壇——2008通信電源學(xué)術(shù)研討會(huì)論文集[C];2008年
6 王燕;吳英鵬;黃毅;馬延風(fēng);陳永勝;;單層石墨用作超級(jí)電容器的研究[A];2009年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊(cè))[C];2009年
7 趙健偉;倪文彬;王登超;黃忠杰;;超級(jí)電容器電極材料的設(shè)計(jì)、制備及性質(zhì)研究[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年
8 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應(yīng)的新型超級(jí)電容器——多孔碳電極材料的影響[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年
9 馬衍偉;;新型超級(jí)電容器石墨烯電極材料的研究[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第7分冊(cè))[C];2010年
10 劉不厭;彭喬;孫s,
本文編號(hào):1970804
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1970804.html