微生物燃料電池同步脫氮產(chǎn)電性能及機理研究
本文選題:微生物燃料電池 + 反硝化。 參考:《浙江大學(xué)》2014年博士論文
【摘要】:面對環(huán)境污染和能源短缺的雙重壓力,傳統(tǒng)高能耗的廢水處理技術(shù)已難以滿足可持續(xù)發(fā)展的要求。微生物燃料電池(Microbial fuel cell, MFC)以微生物為催化劑將廢水中污染物蘊含的化學(xué)能直接轉(zhuǎn)化為電能,可實現(xiàn)同步治污產(chǎn)電。但迄今為止,MFC研究主要集中在有機廢水方面。在氮素污染凸現(xiàn)的今天,研發(fā)兼具脫氮產(chǎn)電功能的MFC對廢水處理具有重大的現(xiàn)實意義。 本文創(chuàng)建陽極反硝化微生物燃料電池(Anodic denitrification MFC, AD-MFC)和厭氧氨氧化微生物燃料電池(Anaerobic ammonium oxidation MFC, ANAMMOX-MFC),系統(tǒng)而深入地研究了AD-MFC和ANAMMOX-MFC的脫氮產(chǎn)電性能、影響因素和工作機理,主要結(jié)果如下: 1)創(chuàng)建了AD-MFC,探明了其同步反硝化產(chǎn)電性能。 以反硝化菌富集培養(yǎng)物為生物催化劑,成功創(chuàng)建AD-MFC,實現(xiàn)了同步反硝化產(chǎn)電。AD-MFC具有良好的脫氮產(chǎn)電性能。在批式試驗中,初始硝氮濃度和COD濃度分別為100.22±0.62mg/L和500.40±1.67mg/L, AD-MFC的最大容積反硝化速率、最大電壓和最大功率密度分別達到0.31±0.01kgN/m3·d、602.80±5.42mV和908.42±0.07mW/m3。AD-MFC的產(chǎn)電過程呈現(xiàn)階段性變化。由于陽極液中主導(dǎo)反應(yīng)(反硝化、甲醇降解、內(nèi)源呼吸和細胞水解發(fā)酵)依次演替,陽極電極電勢不斷變化,導(dǎo)致電壓曲線呈現(xiàn)“降低-升高-再降低”的三階段過程特性,未見國內(nèi)外相關(guān)文獻報道。AD-MFC蘊藏指示功能。硝氮消耗、COD消耗與電壓損耗的Pearson相關(guān)系數(shù)分別達到0.9964和0.9917,電壓變化與反硝化基質(zhì)濃度變化呈顯著線性相關(guān),電信號可指示反硝化進程。 2)考察了基質(zhì)濃度對AD-MFC脫氮產(chǎn)電性能的影響,揭示了AD-MFC污染物降解和產(chǎn)電動力學(xué)規(guī)律。 AD-MFC脫氮產(chǎn)電性能與基質(zhì)濃度密切相關(guān)。在低濃度范圍,提高基質(zhì)濃度可提高微生物活性,強化AD-MFC脫氮產(chǎn)電能力,但在高基質(zhì)濃度范圍,基質(zhì)產(chǎn)生自抑制,削弱AD-MFC脫氮產(chǎn)電能力。AD-MFC基質(zhì)降解和產(chǎn)電動力學(xué)過程符合Han-Levenspiel模型。以該模型擬合得到的NO3-N降解、COD降解、輸出電壓、功率密度的最大值(rmax)、半飽和常數(shù)(Ks)和完全抑制濃度(Sm)分別為1.27kg N/m3·d.351.63mg/L和4301.25mg/L;5.14kgCOD/m3·d.1950.21mg/L和20050.69mg/L;1030.53mV.203.25mg/L和4950.36mg/L;1386.39mW/m3、293.47mg/L和4649.03mg/L。NO3--N半飽和常數(shù)(Ks)大于200mg NO3--N/L,完全抑制濃度(Sm)大于4000mg NO3--N/L,表明AD-MFC對高基質(zhì)濃度具有較強的耐受性。AD-MFC適用于高濃度硝酸鹽有機廢水的除污和產(chǎn)電。初始NO3-N濃度和COD濃度分別為1999.95±2.86mg/L和10058±1.26mg/L時,最大反硝化速率、最大電壓和最大功率密度分別達1.26±0.01kg N/m3·d、1016.75±4.74mV和1314.41±24.60mW/m3.其容積脫氮速率處于國內(nèi)外文獻報道的較高水平。 3)分析了AD-MFC物質(zhì)轉(zhuǎn)化特性、微生物功能空間分布、電子傳遞機制和功能菌群組成,揭示了AD-MFC工作機理。 AD-MFC產(chǎn)電過程與反硝化相耦合。單獨以甲醇或硝酸鹽作為基質(zhì)時,兩者不能被有效降解,AD-MFC產(chǎn)電能力也有限;只有當兩者共存時,AD-MFC才能發(fā)揮脫氮產(chǎn)電效能。陽極上的生物膜和陽極液中的懸浮污泥均具有脫氮產(chǎn)電功能,其功能空間小于AD-MFC的總體功能空間,AD-MFC反硝化脫氮過程由電極生物膜和懸浮污泥協(xié)作完成。電極生物膜和懸浮污泥的反硝化功能空間分別為41.90%和67.98%,產(chǎn)電功能空間分別為52.26%和69.03%,懸浮污泥在AD-MFC功能空間中占據(jù)優(yōu)勢。電極生物膜和懸浮污泥具有不同的電子傳遞機制。電極生物膜主要依靠直接接觸的方式進行電子傳遞;而懸浮污泥在不同反應(yīng)階段可產(chǎn)生多種中介體,主要依靠中介體為媒介進行電子傳遞。AD-MFC中功能菌群組成差異較大。接種污泥含有大量的球菌、桿菌和絲狀菌,而電極生物膜主要為絲狀菌和桿菌,懸浮污泥主要為球菌和絲狀菌。菌群結(jié)構(gòu)隨產(chǎn)電過程發(fā)生演替,懸浮污泥和電極生物膜中微生物種類較接種污泥明顯減少。AD-MFC中的優(yōu)勢菌群歸屬于γ-變形菌綱、p-變形菌綱、擬桿菌綱和Ignavibacteria綱,功能菌群主要為反硝化菌。 4)創(chuàng)建了ANAMMOX-MFC,探明了其同步厭氧氨氧化產(chǎn)電性能。 以ANAMMOX菌富集培養(yǎng)物作為生物催化劑,成功創(chuàng)建ANAMMOX-MFC,實現(xiàn)了同步厭氧氨氧化產(chǎn)電。ANAMMOX-MFC具有良好的脫氮產(chǎn)龜性能。在連續(xù)試驗中,進水NH4+-N和N02--N濃度分別從25mg/L和33mg/L逐漸提升至250mg/L和330mg/L時,NH4+-N、 NO2--N和TN去除率分別保持在90%、90%和80%以上,容積脫氮速率最大可達3.01±0.27kg N/m3·d,最大電壓和最大功率密度可達225.48±10.71mV和1308.23±40.38mW/m3,是目前文獻報道的最高MFC脫氮負荷。ANAMMOX-MFC陽極極化顯著,陽極電荷傳遞電阻約占ANAMMOX-MFC總電阻的60%,是限制ANAMMOX-MFC產(chǎn)電的瓶頸因素。ANAMMOX-MFC也蘊含指示功能。在一定范圍內(nèi)(25mg/L~250mg/L),輸出電壓隨進水NH4+-N濃度線性變化,可以指示NH4+-N濃度,這種指示功能主要來自于不同NH4+-N濃度所致的氨氧化速率變化。 5)考察了溫度、pH和中介體對ANAMMOX-MFC脫氮產(chǎn)電性能的影響,優(yōu)化了ANAMMOX-MFC的操作條件。 溫度可顯著影響ANAMMOX-MFC的脫氮產(chǎn)電性能。ANAMMOX-MFC脫氮產(chǎn)電的最適溫度約為30℃;高于或低于此溫度時,容積脫氮速率和輸出電壓同步降低;溫度變化引起生物反應(yīng)變化是導(dǎo)致ANAMOX-MFC產(chǎn)電性能變化的主要原因。pH也可影響ANAMMOX-MFC的脫氮產(chǎn)電性能。ANAMMOX-MFC脫氮產(chǎn)電的最適pH為7~8;pH影響ANAMMOX-MFC容積脫氮速率和輸出電壓的同步性較低;pH所致的生物反應(yīng)變化和陽極電極電勢變化共同引發(fā)了ANAMMOX-MFC產(chǎn)電性能變化。中介體可強化ANAMMOX-MFC產(chǎn)電性能。低濃度(0.01mmol/L)的中性紅、2-羥基-1,4-萘醌和吩噻嗪等對應(yīng)電子傳遞鏈前端、分子量較小、結(jié)構(gòu)簡單的中介體,可有效降低陽極電荷轉(zhuǎn)移電阻,顯著強化ANAMMOX-MFC產(chǎn)電性能;而燦爛甲酚藍和血紅素等對應(yīng)電子傳遞鏈后端、分子量較大、結(jié)構(gòu)相對復(fù)雜的中介體,對ANAMMOX-MFC產(chǎn)電性能的強化作用較弱;中介體濃度過高(0.01~0.02mmol/L)會抑制生物反應(yīng),致使ANAMMOX-MFC產(chǎn)電能力不升反降。 6)研究了ANAMMOX-MFC的物質(zhì)轉(zhuǎn)化特性、功能菌群組成、微生物功能空間分布和電子傳遞機制,揭示了ANAMMOX-MFC工作機理。 ANAMMOX-MFC產(chǎn)電過程與ANAMMOX反應(yīng)相耦合。單獨以氨或亞硝酸鹽作為基質(zhì)時,ANAMMOX菌富集培養(yǎng)物發(fā)生水解,脫氮產(chǎn)電過程無法維持;氨氧化與亞硝酸鹽還原相耦合,只有當氨和亞硝酸鹽共同作為產(chǎn)電基質(zhì)時,ANAMMOX-MFC才能持續(xù)發(fā)揮脫氮產(chǎn)電功能。陽極上的生物膜和陽極液中的懸浮污泥均具有同步厭氧氨氧化產(chǎn)電功能,ANAMMOX-MFC脫氮產(chǎn)電過程也由電極生物膜和懸浮污泥協(xié)同完成。ANAMMOX-MFC中電極生物膜和懸浮污泥分別在不同的功能空間中占據(jù)優(yōu)勢,電極生物膜和懸浮污泥的厭氧氨氧化功能空間分別為30.14%和53.43%,產(chǎn)電功能空間分別為59.52%和47.87%。電極生物膜和懸浮污泥具有不同的電子傳遞機制。電極生物膜主要依靠直接接觸方式進行電子傳遞;而懸浮污泥主要依靠中介體為媒介進行電子傳遞,基質(zhì)中的NO2-N組分可作為潛在的中介體,懸浮污泥自身也可產(chǎn)生中介體。ANAMMOX-MFC中的功能菌群組成存在一定差異。電極生物膜上的ANAMMOX菌厭氧氨氧化體更大,鐵顆粒數(shù)量較多,血紅素c含量較高,胞外多聚物(Extracellular polymeric substances,EPS)含量較少,有助于增強胞外電子傳遞能力。懸浮污泥中的微生物種類與接種污泥類似,而電極生物膜中的微生物種類與接種污泥差異較大。ANAMMOX-MFC中的優(yōu)勢菌群歸屬于p-變形菌綱、γ-變形菌綱、酸桿菌綱、Ignavibacteria綱和浮霉狀菌門,功能菌群是由ANAMMOX菌、反硝化細菌和其他多種細菌組成的共生體系。
[Abstract]:In the face of the dual pressure of environmental pollution and energy shortage, the traditional high energy waste water treatment technology has been difficult to meet the requirements of sustainable development. Microbial fuel cell (MFC) uses microorganism as the catalyst to convert the chemical energy contained in the wastewater directly into electric energy, and can achieve synchronous pollution control and produce electricity. MFC research is mainly focused on organic wastewater. In the present situation of nitrogen pollution, it is of great practical significance to research and develop MFC with the function of denitrification and electricity production for wastewater treatment.
In this paper, an anodic denitrifying microbial fuel cell (Anodic denitrification MFC, AD-MFC) and an anaerobic ammoxidation microbial fuel cell (Anaerobic ammonium oxidation MFC, ANAMMOX-MFC) are established. The performance, influence factors and working mechanism of AD-MFC and ANAMMOX-MFC are systematically studied. The main results are as follows:
1) AD-MFC was established to verify its synchronous denitrification power generation performance.
The AD-MFC was successfully created with the enrichment of the denitrifying bacteria as a biocatalyst, and the simultaneous denitrification and electricity production of.AD-MFC was achieved. In the batch test, the initial Nitron concentration and COD concentration were 100.22 + 0.62mg/L and 500.40 + 1.67mg/L respectively, the maximum denitrification rate of AD-MFC, the maximum voltage and maximum power The production process of the density of 0.31 + 0.01kgN/m3. D, 602.80 + 5.42mV and 908.42 + 0.07mW/m3.AD-MFC showed a phased change. Due to the leading reaction in the anode (denitrification, methanol degradation, endogenous respiration and cell hydrolysis fermentation) successively successional succession, the anode electrode potential changed continuously, resulting in the voltage curve showing "decrease - rise - then decrease" The characteristics of the three stage process have not been reported in the domestic and foreign related literature on the.AD-MFC implication function. Nitrate consumption, the Pearson correlation coefficient of COD consumption and voltage loss are 0.9964 and 0.9917 respectively, and the voltage changes have a significant linear correlation with the change of denitrification matrix concentration, and the electrical signals can indicate the denitrification process.
2) the effect of substrate concentration on AD-MFC denitrification and electricity generation was investigated, and the degradation and electrokinetics of AD-MFC pollutants were revealed.
The performance of AD-MFC denitrification is closely related to the matrix concentration. In the low concentration range, the increase of substrate concentration can increase the activity of microorganism and strengthen the capacity of AD-MFC removal of nitrogen, but at the high matrix concentration, the matrix produces self inhibition, and the capacity of AD-MFC denitrification is weakened, and the degradation of.AD-MFC matrix and the electrokinetic process are in accordance with the Han-Levenspiel model. The NO3-N degradation, COD degradation, the maximum output voltage, the maximum power density (Rmax), the semi saturation constant (Ks) and the total inhibitory concentration (Sm) are 1.27kg N/m3. D.351.63mg/L and 4301.25mg/L respectively, and 5.14kgCOD/m3. D.1950.21mg/L and 20050.69mg/L. The NO3--N semi saturation constant (Ks) is larger than 200mg NO3--N/L, and the total inhibitory concentration (Sm) is greater than 4000mg NO3--N/L. It shows that AD-MFC has strong tolerance to high matrix concentration and is suitable for the removal of pollution and electricity production in high concentration nitrate organic wastewater. The initial NO3-N concentration and COD concentration are divided into 1999.95 + 2.86mg/L and 10058 +. The rate, maximum voltage and maximum power density are 1.26 + 0.01kg N/m3. D, 1016.75 + 4.74mV and 1314.41 + 24.60mW/m3., and their volumetric denitrification rates are at higher levels reported in the literature at home and abroad.
3) the transformation characteristics of AD-MFC substance, the spatial distribution of microbial function, the mechanism of electron transport and the composition of functional flora were analyzed, and the working mechanism of AD-MFC was revealed.
The AD-MFC production process is coupled with the denitrification phase. When methanol or nitrate is used as the substrate, both can not be effectively degraded and the capacity of AD-MFC production is limited. Only when both coexist, AD-MFC can exert the efficiency of nitrogen removal and production. The biofilm and the suspended sludge on the anode have the function of denitrification and electricity production, and its function space Less than AD-MFC's overall function space, AD-MFC denitrification process is completed by electrode biofilm and suspended sludge. The denitrification function space of electrode biofilm and suspended sludge is 41.90% and 67.98% respectively, and the function space of electricity production is 52.26% and 69.03% respectively. The suspended sludge occupies the advantage in AD-MFC function space. Electrode biofilm and suspension The floating sludge has different electron transfer mechanisms. The electrode biofilm mainly relies on direct contact, while the suspended sludge can produce a variety of intermediaries in the different reaction stages, mainly depending on the mediator as the medium for the electronic transfer of functional bacteria in.AD-MFC, and the inoculated sludge contains a large number of cocci and rods. Bacteria and filamentous bacteria, and electrode biofilm mainly filamentous bacteria and bacilli, suspended sludge is mainly cocci and filamentous bacteria. The structure of the bacteria group is successional with the process of electricity production. The microbial species in the suspended sludge and electrode biomembrane are obviously less than the inoculated sludge. The dominant bacteria in.AD-MFC belong to gamma deforminum, p- Proteus, bacteriobacteria and Ig Navibacteria class, the functional flora is mainly denitrifying bacteria.
4) ANAMMOX-MFC was established, and its synchronous anammox power generation performance was proved.
ANAMMOX-MFC was successfully created with the enrichment culture of ANAMMOX bacteria as a biocatalyst. The performance of nitrogen producing tortoise with synchronous anaerobic ammonia oxidation production.ANAMMOX-MFC was achieved. In continuous experiments, when the concentration of influent NH4+-N and N02--N gradually increased from 25mg/L and 33mg/L to 250mg/L and 330mg/L, NH4+-N, NO2--N and TN removal rates were guaranteed respectively. The maximum volumetric denitrification rate is up to 3.01 + 0.27kg N/m3 d at 90%, 90% and 80%. The maximum voltage and maximum power density can reach 225.48 + 10.71mV and 1308.23 + 40.38mW/m3. The highest MFC denitrogenation load of the current literature is.ANAMMOX-MFC anode polarization significant, and the anode charge transmission resistance accounts for 60% of the total ANAMMOX-MFC resistance, which is limited ANA. The bottleneck factor of MMOX-MFC production.ANAMMOX-MFC also contains indicator function. In a certain range (25mg/L to 250mg/L), the output voltage varies linearly with the concentration of the influent NH4+-N, which can indicate the concentration of NH4+-N. This indicator function mainly comes from the change of the rate of ammoxidation caused by different NH4+-N concentrations.
5) the effects of temperature, pH and intermediaries on the nitrogen and nitrogen generation of ANAMMOX-MFC were investigated, and the operating conditions of ANAMMOX-MFC were optimized.
The temperature can significantly affect the performance of nitrogen and electricity of ANAMMOX-MFC, the optimum temperature of.ANAMMOX-MFC is about 30 C. When the temperature is above or below the temperature, the volume denitrification rate and the output voltage synchronously decrease, and the change of the temperature caused by the change of the biological reaction is the main cause of the transformation of the electrical property of ANAMOX-MFC, and the.PH can also affect the ANAMMOX-MFC. The optimum pH for denitrification and production of nitrogen and electricity by.ANAMMOX-MFC is 7~8, and the synchronization of ANAMMOX-MFC volume denitrogenation rate and output voltage is lower by pH; the changes of biological reaction and anode electrode potential caused by pH lead to the change of electrical property of ANAMMOX-MFC. The medium can strengthen the property of ANAMMOX-MFC production and low concentration (0.01mmol/). The neutral red, 2- hydroxy -1,4- naphthoquinone and phenothiazine, which correspond to the front-end of the electron transfer chain, have a small molecular weight and a simple structure, which can effectively reduce the anode charge transfer resistance and significantly enhance the property of the ANAMMOX-MFC production, while the back end of the electron transfer chain, such as brilliant Cresol Blue and heme, is larger, and the structure is relatively complex. The medium, which has a weak strengthening effect on the electrical properties of ANAMMOX-MFC, is too high (0.01 ~ 0.02mmol/L) to inhibit the biological reaction, which causes the power production capacity of ANAMMOX-MFC to decrease and reverse.
6) we studied the material transformation characteristics of ANAMMOX-MFC, the composition of functional flora, the spatial distribution of microbial function and the mechanism of electron transport, and revealed the working mechanism of ANAMMOX-MFC.
The ANAMMOX-MFC production process is coupled with the ANAMMOX reaction. When ammonia or nitrite is used as the substrate, the enrichment culture of ANAMMOX bacteria is hydrolyzed and the process of nitrogen removal is not maintained; the ammonia oxidation and nitrite reduction are coupled. Only when the ammonia and nitrite are used as the substrate for the production of electricity, the ANAMMOX-MFC can continue to play the power of denitrification and production. Function. Both the biofilm on the anode and the suspended sludge in the anodic liquid have the function of synchronous anammox production. The process of ANAMMOX-MFC denitrification and electricity production is also accomplished by the synergistic completion of electrode biological membrane and suspended sludge in the.ANAMMOX-MFC electrode biofilm and suspended sludge in different functional spaces, electrode biofilm and suspended sludge. The function space of anammox is 30.14% and 53.43%, respectively, and the function space of the electricity is 59.52% and the 47.87%. electrode biofilm and the suspended sludge have different electron transfer mechanism. The electrode biofilm mainly relies on the direct contact mode to carry on the electron transfer, and the suspended sludge is mainly mediated by the medium by the medium. The NO2-N components in the medium can also be used as potential intermediaries, and the suspended sludge itself can also produce a certain difference in the composition of functional bacteria in the intermediary.ANAMMOX-MFC. The anaerobic ammonia oxidizing body of ANAMMOX bacteria on the electrode biofilm is larger, the amount of iron particles is more, the content of heme C is higher, and the extracellular polymer (Extracellular polymeric substances, EPS) is contained. The amount of the microorganism in the suspended sludge is similar to the inoculated sludge, while the species in the biofilm of the electrode biological membrane are different from the inoculated sludge, and the dominant bacteria in the.ANAMMOX-MFC are attributed to the p- Proteus, the gamma deforma, the acid phylum, the Ignavibacteria class and the floating mycophenolate, and the functional bacteria. The group is a symbiotic system composed of ANAMMOX bacteria, denitrifying bacteria and many other bacteria.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:X703;TM911.45
【參考文獻】
相關(guān)期刊論文 前10條
1 陳艷卿;;中國廢水排放氨氮控制標準評述[J];環(huán)境科學(xué)與管理;2011年03期
2 張燕梅;方軍;嚴格;莊永澤;;堿性直接甲醇燃料電池含氟陰離子交換膜的制備及性能研究[J];電化學(xué);2011年01期
3 王銀華;馬悅欣;劉長發(fā);朱學(xué)惠;朱瑩;;厭氧氨氧化反應(yīng)器載體生物膜細菌多樣性的研究[J];大連海洋大學(xué)學(xué)報;2011年06期
4 謝晴;王彬;冷庚;楊嘉偉;但德忠;;基于混菌產(chǎn)電微生物燃料電池的最新研究進展[J];中國給水排水;2010年02期
5 李濱;趙志瑞;馬斌;張樹軍;劉新春;王曉輝;白志輝;;克隆文庫方法分析厭氧氨氧化反應(yīng)器中細菌群落結(jié)構(gòu)[J];環(huán)境科學(xué)與技術(shù);2012年12期
6 曾濤濤;李冬;邱文新;曾輝平;劉濤;張杰;;低溫厭氧氨氧化生物濾池群落結(jié)構(gòu)分析[J];哈爾濱工業(yè)大學(xué)學(xué)報;2012年06期
7 王慧勇;梁鵬;黃霞;王曉昌;;微生物燃料電池中產(chǎn)電微生物電子傳遞研究進展[J];環(huán)境保護科學(xué);2009年01期
8 梁鵬;范明志;曹效鑫;黃霞;王誠;;微生物燃料電池表觀內(nèi)阻的構(gòu)成和測量[J];環(huán)境科學(xué);2007年08期
9 梁鵬;張玲;黃霞;范明志;曹效鑫;;雙筒型微生物燃料電池生物陰極反硝化研究[J];環(huán)境科學(xué);2010年08期
10 陳姍姍;張翠萍;劉廣立;張仁鐸;李明臣;全向春;;純菌株與混合菌株在MFC中降解喹啉及產(chǎn)電性能的研究[J];環(huán)境科學(xué);2010年09期
相關(guān)博士學(xué)位論文 前3條
1 陳建偉;高效短程硝化和厭氧氨氧化工藝研究[D];浙江大學(xué);2011年
2 毛躍建;廢水處理系統(tǒng)中重要功能類群Thauera屬種群結(jié)構(gòu)與功能的研究[D];上海交通大學(xué);2009年
3 張蕾;厭氧氨氧化性能的研究[D];浙江大學(xué);2009年
,本文編號:1966924
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1966924.html