電動汽車用鋰離子電池管理系統(tǒng)軟件設計
發(fā)布時間:2018-05-28 04:13
本文選題:電動汽車 + 鋰離子電池; 參考:《湖南大學》2014年碩士論文
【摘要】:汽車的發(fā)展,給人們的生活帶來了各種便利,但同時也帶來了各種問題。目前環(huán)境問題和能源問題對汽車工業(yè)的發(fā)展提出了新要求。新能源汽車以其各方面的優(yōu)點備受關注,作為新能源汽車中的一個方向,電動汽車的研究取得了各方面的成績。但仍有許多關鍵性共性技術問題亟待解決,電池管理系統(tǒng)就是其中之一。本文從電池管理系統(tǒng)軟件設計的角度,構建了電池管理系統(tǒng)的軟件大體框架,同時對電池SOC估算進行了相應研究。主要研究工作包括以下幾個方面: (1)采用RC等效電路模型來模擬鋰離子電池的電壓特性,運用脈沖放電實驗方法對本文研究電池進行充放電實驗,對實驗得到的數據進行多元線性回歸分析,得到了本文研究鋰離子電池RC等效電路模型的參數?紤]到電池管理系統(tǒng)中對于電池特性參數的計算要求,完成了本文電池管理系統(tǒng)中使用電池參數及數據格式的定義。 (2)在電池管理系統(tǒng)的上位機軟件設計中,采用了實時操作系統(tǒng)μC/OS II,完成了μC/OS II實時操作系統(tǒng)在上位機微控制器MC9S12XS256上的移植,并給出了移植代碼;讦藽/OS II實時操作系統(tǒng),對上位機所需完成的功能進行了任務劃分,并分別設定了各個任務的優(yōu)先級和調度周期。 (3)定義了電池管理系統(tǒng)的功能需求,結構上將電池管理系統(tǒng)分為上位機和下位機,并分別給出了上位機和下位機的軟件設計流程。其中,上位機軟件基于μC/OS II操作系統(tǒng)進行設計,下位機軟件基于下位機所需完成功能先后順序進行設計,實現了上位機和下位機之間基于CAN總線的通信策略。并參照DeviceNet通信協議,完成了通信過程中單體電池電壓、溫度數據幀格式的系統(tǒng)定義。 (4)采用模糊自適應卡爾曼濾波方法,改進自適應卡爾曼濾波方法采用指數加權方式修正噪聲統(tǒng)計特性時容易由于突然擾動而導致發(fā)散的缺點,運用UDDS循環(huán)工況對濾波方法進行仿真對比,,結果表明本文使用的模糊自適應卡爾曼濾波法相比傳統(tǒng)卡爾曼濾波法獲得了較高的SOC估算精度。
[Abstract]:The development of automobile brings various conveniences to people's life, but it also brings various problems at the same time. At present, the environmental and energy problems have put forward new requirements to the development of the automobile industry. New energy vehicles are concerned with the advantages of all aspects. As a direction of new energy vehicles, the research of electric vehicles has made various aspects. But there are still many key common technical problems to be solved. The battery management system is one of them. From the point of view of the software design of the battery management system, this paper constructs the general framework of the software of the battery management system, and studies the SOC estimation of the battery. The main research work includes the following aspects:
(1) using the RC equivalent circuit model to simulate the voltage characteristics of the lithium ion battery, using the pulse discharge experiment method to study the battery charging and discharging experiments, the data obtained by the experiment are multivariate linear regression analysis, and the parameters of the study of the RC equivalent circuit model of the lithium ion battery are obtained. The requirement of battery characteristic parameters is calculated, and the definition of battery parameters and data format in battery management system is completed.
(2) in the design of the host computer software of the battery management system, the real-time operating system mu C/OS II is adopted, and the transplantation of the real-time operating system of the C/OS II on the PC micro controller MC9S12XS256 is completed, and the transplant code is given. Based on the real-time operating system of the C/OS II, the functions of the upper computer are divided and set up respectively. The priority of each task and the scheduling period are determined.
(3) the functional requirements of the battery management system are defined. The battery management system is divided into the upper computer and the lower computer, and the software design process of the upper computer and the lower computer is given. The upper computer software is designed based on the C/OS II operating system, and the lower computer software is designed in order to complete the function sequence based on the lower computer. The communication strategy based on the CAN bus between the host computer and the lower computer is realized, and the system definition of the single cell voltage and temperature data frame format in the communication process is completed with reference to the DeviceNet communication protocol.
(4) the fuzzy adaptive Calman filter method is used to improve the adaptive Calman filter method to modify the noise statistic characteristic by exponential weighting method, which is easily caused by sudden disturbance. The filter method is simulated and compared with the UDDS cycle condition. The result shows the fuzzy adaptive Calman filter method used in this paper. Compared with the traditional Calman filtering method, the SOC estimation accuracy is higher.
【學位授予單位】:湖南大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM912
【參考文獻】
相關期刊論文 前10條
1 魏震;張敬轅;謝劍英;;面向對象模型的DeviceNet協議及其實現[J];電氣自動化;2001年06期
2 宋永華;陽岳希;胡澤春;;電動汽車電池的現狀及發(fā)展趨勢[J];電網技術;2011年04期
3 蔡忠勇,高涵;DeviceNet現場總線講座 第一講 現場總線發(fā)展概況與DeviceNet進入中國[J];低壓電器;2000年02期
4 阮于東;DeviceNet現場總線講座第二講DeviceNet總線技術(一)[J];低壓電器;2000年03期
5 陳洪圖;張慶;;基于μC/OS-Ⅱ的電動車電池管理系統(tǒng)設計[J];電源技術;2009年06期
6 蔡少偉;;鋰離子電池正極三元材料的研究進展及應用[J];電源技術;2013年06期
7 唐愛東;王海燕;黃可龍;譚斌;王曉玲;;鋰離子電池正極材料層狀Li-Ni-Co-Mn-O的研究[J];化學進展;2007年09期
8 林成濤;仇斌;陳全世;;電動汽車電池功率輸入等效電路模型的比較研究[J];汽車工程;2006年03期
9 溫家鵬;姜久春;文鋒;張維戈;;Kalman算法在純電動汽車SOC估算中的應用誤差分析[J];汽車工程;2010年03期
10 麻友良,陳全世,齊占寧;電動汽車用電池SOC定義與檢測方法[J];清華大學學報(自然科學版);2001年11期
本文編號:1945229
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1945229.html
教材專著