基于鹽差發(fā)電系統(tǒng)的自驅(qū)型旋轉(zhuǎn)式壓力交換器的仿真及優(yōu)化
本文選題:鹽差能 + 旋轉(zhuǎn)式壓力交換器; 參考:《中國(guó)海洋大學(xué)》2014年碩士論文
【摘要】:鹽差能作為一種新型、清潔、無(wú)污染的可再生能源,其主要表現(xiàn)形式為海水與淡水之間或者兩種鹽度不同的海水之間的化學(xué)電位差能,是以化學(xué)能形態(tài)存在于海洋之中的海洋能。鹽差能具有蘊(yùn)藏量大、單位面積能量密度高等特點(diǎn),若將鹽差能轉(zhuǎn)化為電能,將具有非?捎^的社會(huì)效益和經(jīng)濟(jì)效益。 本文通過(guò)參考國(guó)內(nèi)外鹽差能發(fā)電技術(shù)的研究成果并結(jié)合實(shí)驗(yàn)室所申請(qǐng)的100W鹽差能發(fā)電項(xiàng)目,,通過(guò)原理分析、參數(shù)計(jì)算以及原理試驗(yàn)等方式,建立了一套采用滲透壓法進(jìn)行鹽差能發(fā)電的試驗(yàn)系統(tǒng)。壓力交換器作為滲透壓法鹽差能發(fā)電系統(tǒng)中的核心部件,其工作性能對(duì)鹽差發(fā)電系統(tǒng)的發(fā)電效率具有極大的影響。然而,由于目前市面上的壓力交換裝置主要應(yīng)用于反滲透海水系統(tǒng),直接采用現(xiàn)有產(chǎn)品時(shí),其在鹽差能發(fā)電系統(tǒng)中的能量轉(zhuǎn)化效率會(huì)在一定程度上低于理論設(shè)計(jì)值,因而文中嘗試自行設(shè)計(jì)一種適用于100W鹽差能發(fā)電項(xiàng)目的自驅(qū)型旋轉(zhuǎn)式壓力交換器。 在自驅(qū)型旋轉(zhuǎn)式壓力交換器的設(shè)計(jì)過(guò)程中,最主要的是轉(zhuǎn)子以及端蓋的設(shè)計(jì)。轉(zhuǎn)子的設(shè)計(jì)參數(shù)包括孔道的結(jié)構(gòu)、個(gè)數(shù)以及相關(guān)的尺寸;端蓋的參數(shù)主要是孔道的尺寸以及集液槽的內(nèi)部結(jié)構(gòu)。以滲透壓法鹽差能發(fā)電系統(tǒng)中的壓力交換器的工作環(huán)境為設(shè)計(jì)依據(jù),結(jié)合旋轉(zhuǎn)式壓力交換器的設(shè)計(jì)理論,對(duì)自驅(qū)型旋轉(zhuǎn)式壓力交換器的結(jié)構(gòu)參數(shù)以及尺寸參數(shù)進(jìn)行確定。再根據(jù)所得出的設(shè)計(jì)結(jié)果,采用三維繪圖軟件SolidWorks繪制出了轉(zhuǎn)子和端蓋的三維模型。此外,為了進(jìn)一步的對(duì)裝置核心部件的工作狀態(tài)進(jìn)行分析,將繪制出的轉(zhuǎn)子孔道和端蓋孔道的三維模型以STEP的格式保存后導(dǎo)入到Gambit軟件中,進(jìn)行網(wǎng)格劃分以及初始工作條件的設(shè)定后,運(yùn)用Fluent軟件進(jìn)行分析,模擬出核心部件的工作狀態(tài)。最后根據(jù)仿真的結(jié)果進(jìn)行分析以及優(yōu)化設(shè)計(jì),由此得出更為合理的設(shè)計(jì)方案。
[Abstract]:Salt difference energy, as a new, clean and non-polluting renewable energy, is mainly expressed in the form of chemical potential difference between seawater and fresh water or between two kinds of seawater with different salinity. It is the ocean energy that exists in the ocean in the form of chemical energy. Salt difference energy has the characteristics of large potential and high energy density per unit area. If the salt difference energy is converted into electric energy, it will have considerable social and economic benefits. In this paper, by referring to the domestic and foreign research results of salt differential energy generation technology and combining with the 100W salt differential energy generation project applied by the laboratory, through principle analysis, parameter calculation and principle test, etc. A test system of salt differential energy generation by osmotic pressure was established. As the core component of osmotic salt differential power generation system, the working performance of pressure exchanger has great influence on the generation efficiency of salt differential power generation system. However, because the pressure exchange devices on the market are mainly used in reverse osmosis seawater systems, the energy conversion efficiency in salt differential energy generation system will be lower than the theoretical design value to some extent when the existing products are used directly. Therefore, this paper attempts to design a self-displacement rotary pressure exchanger suitable for 100W salt differential energy generation project. In the design process of self-displacement rotary pressure exchanger, the design of rotor and end cover is the most important. The design parameters of the rotor include the structure, the number and the relevant dimensions of the holes, while the parameters of the end cover are the size of the hole and the internal structure of the liquid collecting tank. Based on the working environment of the pressure exchanger in the salt differential energy generation system with osmotic pressure method and the design theory of the rotary pressure exchanger, the structural parameters and dimension parameters of the self-displacement rotary pressure exchanger are determined. According to the design result, the 3D model of rotor and end cover is drawn by using 3D drawing software SolidWorks. In addition, in order to further analyze the working state of the core components of the device, the 3D model of the rotor channel and the end cover hole is saved in the format of STEP and imported into the Gambit software. After meshing and setting the initial working conditions, the working state of the core components is simulated by using Fluent software. Finally, according to the result of simulation and optimization design, a more reasonable design scheme is obtained.
【學(xué)位授予單位】:中國(guó)海洋大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TM619
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周一卉;丁信偉;姜海峰;張立冬;;旋轉(zhuǎn)式壓力能交換器孔道內(nèi)液柱活塞數(shù)值模擬研究[J];大連理工大學(xué)學(xué)報(bào);2010年06期
2 姚吉倫,胡海修,吳恬,丁昭霞;反滲透海水淡化的預(yù)處理工藝選擇[J];中國(guó)給水排水;2001年08期
3 潘獻(xiàn)輝;王生輝;楊守志;葛云紅;王曉楠;;反滲透海水淡化能量回收技術(shù)的發(fā)展及應(yīng)用[J];中國(guó)給水排水;2010年16期
4 趙飛;馮忠明;焦磊;吳淳杰;張志雄;趙才甫;姚松寶;;壓力交換器壓力脈動(dòng)頻域與轉(zhuǎn)子轉(zhuǎn)速特征分析[J];工程熱物理學(xué)報(bào);2014年01期
5 趙新川;;鹽差動(dòng)力發(fā)電技術(shù)日趨成熟[J];高科技與產(chǎn)業(yè)化;2009年08期
6 劉慶鋒,周一卉,丁信偉;流體壓力能利用技術(shù)綜述[J];化學(xué)工業(yè)與工程技術(shù);2004年04期
7 李剛;李雪梅;柳越;王鐸;何濤;高從X&;;正滲透原理及濃差極化現(xiàn)象[J];化學(xué)進(jìn)展;2010年05期
8 寧克信;干涸鹽湖濃差能實(shí)驗(yàn)發(fā)電裝置設(shè)計(jì)原理[J];海洋工程;1990年02期
9 鞠茂偉;常宇清;周一卉;;工業(yè)中液體壓力能回收技術(shù)綜述[J];節(jié)能技術(shù);2005年06期
10 紀(jì)娟;胡以懷;賈靖;;海水鹽差發(fā)電技術(shù)的研究進(jìn)展[J];能源技術(shù);2007年06期
相關(guān)博士學(xué)位論文 前1條
1 周一卉;旋轉(zhuǎn)正位移式液體壓力能傳遞過(guò)程理論與實(shí)驗(yàn)研究[D];大連理工大學(xué);2010年
本文編號(hào):1913447
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1913447.html