天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

氧化鋅分級結(jié)構(gòu)的制備及在染料敏化太陽能電池中的應(yīng)用

發(fā)布時(shí)間:2018-05-18 15:21

  本文選題:染料敏化太陽能電池 + 光陽極; 參考:《華僑大學(xué)》2014年碩士論文


【摘要】:當(dāng)前,全球正面臨著日益嚴(yán)峻的能源枯竭和環(huán)境污染問題。開發(fā)利用新能源特別是儲量豐富、安全綠色的太陽能逐漸成為人們的聚焦點(diǎn)。染料敏化太陽能電池(dye-sensitized solar cell,DSSC)借鑒綠色植物光合作用的原理,自誕生以來一直備受矚目。作為一種新穎的太陽能轉(zhuǎn)換裝置,其組裝簡單、制作方便、成本低,一度成為人們研究的熱點(diǎn)。作為電池的核心部件,光陽極在光電過程中的電荷收集和傳送方面起著關(guān)鍵作用。其中,應(yīng)用效果最好的光陽極材料為TiO2。在眾多寬帶隙的半導(dǎo)體氧化物中,ZnO的禁帶寬度與TiO2最為接近并且ZnO的電子遷移率和電子擴(kuò)散系數(shù)均高于TiO2,非常有潛力應(yīng)用在DSSC領(lǐng)域。近年來,ZnO在DSSC中的應(yīng)用研究取得了一定的進(jìn)展。考慮到ZnO零維、一維和二維結(jié)構(gòu)在光散射和比表面積方面的不足,本文嘗試制備ZnO的三維分級結(jié)構(gòu)光陽極,增大比表面積的同時(shí)實(shí)現(xiàn)對入射光的有效捕獲和散射,以充分利用入射光,達(dá)到提高電池效率的目的。主要研究內(nèi)容如下: (1)采用水熱法合成基于一維ZnO納米棒的分級結(jié)構(gòu),系統(tǒng)探索制備條件如水熱溫度、pH值和反應(yīng)時(shí)間對產(chǎn)物形貌及DSSC光電性能的影響。實(shí)驗(yàn)結(jié)果表明在反應(yīng)溶液pH為10和溫度為120°C的條件下水熱18h后所得ZnO光陽極薄膜組裝的DSSC相對表現(xiàn)出最好的光電性能。由于該條件下制備的ZnO納米棒基分級結(jié)構(gòu)在染料吸附、電子傳輸和光線捕獲上的優(yōu)勢,其DSSC的短路電流密度達(dá)到7.29mA·cm-2,光電效率達(dá)到2.42%。 (2)采用水熱法合成基于二維ZnO納米片的分級結(jié)構(gòu),,研究了反應(yīng)物摩爾比對產(chǎn)物形貌的影響。結(jié)果表明ZnO納米片基球狀分級結(jié)構(gòu)(ZnO-MS)具有較大的比表面積、孔徑和孔容以利于吸附更多的染料、較優(yōu)異的光散射性能和相對低的電荷復(fù)合率,從而表現(xiàn)出較好的光電性能。采用鈦酸四正丁酯的乙醇溶液90°C熱浴浸泡處理ZnO-MS光陽極,DSSC性能獲得提升:短路電流密度為6.65mA·cm-2、開路電壓為0.676V、效率達(dá)2.94%,分別比沒有經(jīng)過后處理的純ZnO-MS-DSSC提高了44.9%、12.5%和67.0%。 (3)采用水熱法合成基于零維ZnO納米粒的分級結(jié)構(gòu),表征結(jié)果顯示該產(chǎn)物產(chǎn)量大、結(jié)晶度高且形貌規(guī)整。漫反射和染料吸附量測算表明ZnO納米粒基分級結(jié)構(gòu)(ZnO-HS)均優(yōu)于商用ZnO納米顆粒(ZnO-NP)。把ZnO-HS用作反射層材料應(yīng)用在ZnO-NP和TiO2納米顆粒(TiO2-NP)薄膜DSSC上,研究表明:添加反射層后光陽極的漫反射能力顯著增強(qiáng)。ZnO-NP-DSSC的短路電流密度從5.47mA·cm-2提高到ZnO-NP/ZnO-HS-DSSC的12.6mA·cm-2,光電效率從原來的1.68%提高到3.40%。相反,盡管TiO2-NP-DSSC添加反射層后光陽極的漫反射能力得到增強(qiáng),但是,TiO2-NP/ZnO-HS-DSSC的短路電流密度和效率均發(fā)生衰減,這個(gè)結(jié)果與TiO2-NP/ZnO-HS-DSSC內(nèi)部的電荷復(fù)合有關(guān),并在電化學(xué)阻抗圖譜測試結(jié)果中得到了證明。
[Abstract]:At present, the world is facing increasingly serious problems of energy depletion and environmental pollution. Development and utilization of new energy, especially rich in reserves, safe and green solar energy has gradually become the focus of people. Dye-sensitized solar cells (DSCs) have been attracting much attention since their birth for reference to the principle of green plant photosynthesis. As a novel solar energy conversion device, it is easy to assemble, easy to manufacture and low cost. As the core component of battery, photoanode plays a key role in charge collection and transmission in photovoltaic process. Among them, the photoanode material with the best application effect is TIO _ 2. Among the wide band gap semiconductor oxides, the band gap width of ZnO is the closest to that of TiO2, and the electron mobility and electron diffusion coefficient of ZnO are higher than that of TIO _ 2, so it has great potential to be used in the field of DSSC. In recent years, some progress has been made in the application of DSSC. Considering the deficiency of ZnO zero-dimensional, one-dimensional and two-dimensional structure in light scattering and specific surface area, this paper attempts to fabricate the three-dimensional graded structure photoanode of ZnO, which increases the specific surface area and realizes the effective capture and scattering of incident light at the same time. In order to make full use of the incident light, the efficiency of the battery can be improved. The main contents of the study are as follows: 1) the hierarchical structure based on one-dimensional ZnO nanorods was synthesized by hydrothermal method. The effects of preparation conditions such as hydrothermal temperature, pH value and reaction time on the morphology and optoelectronic properties of DSSC were systematically explored. The experimental results show that the DSSC assembled by ZnO photoanode films after 18 hours of heat treatment at pH 10 and 120 擄C shows the best optoelectronic properties. Because of the advantages of the ZnO nanorods in dye adsorption, electron transport and light capture, the short-circuit current density of DSSC is up to 7.29mA cm-2, and the optoelectronic efficiency is 2.42. The effects of molar ratio of reactants on the morphology of the products were studied. The results show that ZnO nanoparticles have large surface area, pore size and pore volume for adsorption of more dyes, excellent light scattering performance and relatively low charge recombination rate, thus showing better photoelectric performance. The performance of ZnO-MS photoanode was improved by immersion in 90 擄C ethanol solution of tetrabutyl titanate in 90 擄C hot bath. The short-circuit current density was 6.65mA cm-2, the open circuit voltage was 0.676 V, and the efficiency was 2.94, which was higher than that of pure ZnO-MS-DSSC without post-treatment by 44.9% and 67.0%, respectively. The gradation structure based on zero-dimensional ZnO nanoparticles was synthesized by hydrothermal method. The characterization results showed that the product had high yield, high crystallinity and regular morphology. The results of diffuse reflectance and dye adsorption showed that ZnO nanoparticles were superior to commercial ZnO nanoparticles in the structure of ZnO-HSs. ZnO-HS was used as a reflective layer material on ZnO-NP and TiO2 nanocrystalline TIO _ 2-NPN film DSSC. The results show that the diffuse reflectance of the photoanode increases from 5.47mA cm-2 to 12.6mA cm-2 of ZnO-NP/ZnO-HS-DSSC, and the photoelectric efficiency increases from 1.68% to 3.40%. On the contrary, although the diffuse reflectivity of the photoanode increases with the addition of a reflection layer in TiO2-NP-DSSC, the short-circuit current density and efficiency of TiO2-NP- / ZnO-HS-DSSC decrease, which is related to the charge recombination inside the TiO2-NP/ZnO-HS-DSSC. The results of electrochemical impedance spectra are proved.
【學(xué)位授予單位】:華僑大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TQ132.41;TM914.4

【參考文獻(xiàn)】

相關(guān)期刊論文 前1條

1 張娜;;直流電“復(fù)仇”[J];能源;2013年01期



本文編號:1906349

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1906349.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶110ef***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com