石墨烯復(fù)合陰極材料的制備及其在微生物燃料電池中的應(yīng)用
本文選題:微生物燃料電池 + 氧還原反應(yīng)�。� 參考:《哈爾濱工程大學(xué)》2014年碩士論文
【摘要】:微生物燃料電池(MFCs)是一種在處理廢水的同時(shí)能夠產(chǎn)生電能的新技術(shù),這種技術(shù)利用微生物作為催化劑來實(shí)現(xiàn)對有機(jī)質(zhì)或無機(jī)質(zhì)進(jìn)行分解并在這個(gè)過程中獲得電流。微生物燃料電池的這種獨(dú)特的產(chǎn)能方式為解決能源問題并同時(shí)達(dá)到治理廢水的目的提供了一條全新的道路。目前,微生物燃料電池產(chǎn)電性能差以及成本較高的缺點(diǎn)成為了限制其規(guī)模化應(yīng)用的主要障礙。眾所周知,陰極催化劑的成本占據(jù)了微生物燃料電池成本的一大部分。Pt是微生物燃料電池中最常用的陰極催化劑,但其成本較高,且易中毒。針對這個(gè)問題本實(shí)驗(yàn)中制備了石墨烯二氧化錳復(fù)合材料、多孔氮摻雜碳納米片以及氮摻雜石墨烯三種高效低成本的陰極催化劑并成功的將氮摻雜石墨烯空氣陰極單室微生物燃料電池應(yīng)用于處理對硝基苯酚廢水。本論文具體的研究成果概括如下:在微波照射下由石墨烯直接原位還原高錳酸鉀所制得的納米結(jié)構(gòu)的石墨烯/Mn02復(fù)合材料因具備的特殊結(jié)構(gòu)以及石墨烯本身極好的導(dǎo)電性能導(dǎo)致其制備的電極表現(xiàn)出了極高的催化性能。該材料作為陰極催化劑被應(yīng)用于微生物燃料電池時(shí),顯著提高了電池的產(chǎn)電性能。采用石墨烯/MnO2復(fù)合材料作為陰極氧還原催化劑的微生物燃料電池可以產(chǎn)生高達(dá)2083 mW/m2的最大功率密度,分別是單獨(dú)的MnO2催化劑的1.42倍以及Pt/C催化劑的1.22倍。通過碳化GO-PANI并進(jìn)一步采用堿活化處理而制備的多孔氮摻雜碳納米片(PNCN)是一種簡單可行的制備氮摻雜碳材料的方法。該方法制備的PNCN具有極高的比表面積,并且其制備的電極在中性磷酸鹽緩沖溶液中表現(xiàn)出了極好的氧還原催化性能。采用PNCN作為微生物燃料電池的陰極催化劑時(shí)產(chǎn)生的最大功率密度為1159.34 mW/m2,比相同條件下的Pt/C催化劑(858.49mW/m2)高35%。采用后處理法以硝酸或水合肼作為氮源可以制備氮摻雜石墨烯。兩種氮摻雜石墨烯制備的電極均表現(xiàn)出了極好的氧還原催化性能,其中硝酸制備的氮摻雜石墨烯的氧還原催化性能較高。以兩種氮摻雜石墨烯作為微生物燃料電池陰極氧還原催化劑時(shí)產(chǎn)生的最大功率密度均比Pt/C催化劑要高。構(gòu)建了以氮摻雜石墨烯為陰極催化劑的空氣陰極單室微生物燃料電池系統(tǒng)用以降解對硝基苯酚廢水�;旌匣|(zhì)與單一基質(zhì)運(yùn)行微生物燃料電池的結(jié)果表明混合基質(zhì)更有利于廢水中對硝基苯酚的降解�;旌匣|(zhì)運(yùn)行時(shí),對硝基苯酚的去除率隨濃度的增大而減小,但最低去除率仍在70%以上,具有較好的去除效果。含50 mg/L的對硝基苯酚混合基質(zhì)廢水運(yùn)行微生物燃料電池時(shí),其最大輸出功率為561.69 mW/m2,對硝基苯酚的去除率為77.35%,比普通厭氧生物法的去除率提高了 20.27%。
[Abstract]:Microbial fuel cell (MFCs) is a new technology which can produce electric energy while treating wastewater. This technology uses microorganism as catalyst to decompose organic matter or inorganic matter and obtain electric current in the process. This unique capacity of microbial fuel cell provides a new way to solve the energy problem and achieve the purpose of wastewater treatment. At present, the disadvantages of low electrical performance and high cost of microbial fuel cells have become a major obstacle to its application on a large scale. It is well known that the cost of cathode catalyst accounts for a large part of the cost of microbial fuel cell. Pt is the most commonly used cathode catalyst in microbial fuel cell, but its cost is high, and it is easy to be poisoned. In order to solve this problem, the graphene manganese dioxide composite was prepared in this experiment. Porous nitrogen-doped carbon nanochips and nitrogen-doped graphene were successfully used in the treatment of p-nitrophenol wastewater by using nitrogen-doped graphene air cathode single-chamber microbial fuel cell. The specific research results of this thesis are summarized as follows: the nanostructure graphene / Mn02 composites prepared by direct in situ reduction of potassium permanganate by graphene under microwave irradiation have special structure and excellent graphene itself. The electrode prepared by the electrode exhibits high catalytic performance due to its electrical conductivity. When the material is used as cathode catalyst in microbial fuel cells, the electrical performance of the cell is improved significantly. The maximum power density of the microbial fuel cell using graphene / MnO2 composite as cathode oxygen reduction catalyst is up to 2083 mW/m2, which is 1.42 times of that of the single MnO2 catalyst and 1.22 times of that of the Pt/C catalyst. It is a simple and feasible method to prepare nitrogen-doped carbon materials by carbonizing GO-PANI and further using alkali activation to prepare porous nitrogen-doped carbon nanoflakes. The PNCN prepared by this method has a very high specific surface area and the electrode prepared by this method exhibits excellent catalytic performance for oxygen reduction in neutral phosphate buffer solution. The maximum power density produced by using PNCN as cathode catalyst for microbial fuel cell is 1159.34 MW / m ~ (2), which is 35% higher than that of Pt/C catalyst (858.49 MW / m ~ (2) under the same conditions. Nitrogen-doped graphene can be prepared by post-treatment with nitric acid or hydrazine hydrate as nitrogen source. The two kinds of nitrogen-doped graphene electrodes showed excellent catalytic performance for oxygen reduction, and nitrogen-doped graphene prepared by nitric acid had higher catalytic performance for oxygen reduction. The maximum power density of two nitrogen-doped graphene catalysts for cathode oxygen reduction of microbial fuel cells is higher than that of Pt/C catalysts. An air cathode single-chamber microbial fuel cell system with nitrogen-doped graphene as cathode catalyst was constructed for the degradation of p-nitrophenol wastewater. The results showed that the mixed matrix was more favorable to the degradation of p-nitrophenol in wastewater. The removal rate of p-nitrophenol decreased with the increase of concentration, but the lowest removal rate was still more than 70%. The maximum output power of microbial fuel cell was 561.69 MW / m ~ (2) and the removal rate of p-nitrophenol was 77.35 when the mixed substrate wastewater containing 50 mg/L was operated with microbial fuel cell. The removal rate of p-nitrophenol was 20.27% higher than that of ordinary anaerobic biological method.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM911.45
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙云;王麗萍;何士龍;侯梅鋒;陳雪梅;張莉;;Fenton試劑氧化對硝基酚中氧化還原電位的變化規(guī)律[J];環(huán)境污染與防治;2011年04期
2 黃衛(wèi)紅;楊丹;阮介兵;劉瑞;王晶博;;光催化與Fenton試劑對硝基苯酚降解的研究[J];環(huán)境科學(xué)與技術(shù);2010年12期
3 曹茹;董淑芳;;探討中國新能源問題[J];企業(yè)家天地(理論版);2010年04期
4 焦永利;劉召娜;吳德禮;馬魯銘;;對硝基苯酚在銅電極上的電化學(xué)還原過程研究[J];凈水技術(shù);2009年02期
5 楊紅;孫建華;譚國進(jìn);王潤榮;;對硝基苯酚廢水降解的初探[J];廣西輕工業(yè);2009年03期
6 李美超;吳海峰;胡佳琦;馬淳安;;對硝基苯酚在酸性介質(zhì)中的電化學(xué)還原反應(yīng)機(jī)理[J];物理化學(xué)學(xué)報(bào);2008年10期
7 孫健;胡勇有;;廢水處理新理念——微生物燃料電池技術(shù)研究進(jìn)展[J];工業(yè)用水與廢水;2008年01期
8 鄭娜;董德明;花修藝;張立輝;沈秀娥;;自然水體生物膜對苯酚及對硝基苯酚的熱力學(xué)吸附[J];吉林大學(xué)學(xué)報(bào)(理學(xué)版);2007年02期
9 萬年升;顧繼東;郝伏勤;肖翔群;;Rhodococcus sp. Ns對硝基苯酚的好氧生物降解[J];環(huán)境科學(xué);2007年02期
10 關(guān)毅;張鑫;;微生物燃料電池[J];化學(xué)進(jìn)展;2007年01期
相關(guān)博士學(xué)位論文 前1條
1 尤世界;微生物燃料電池處理有機(jī)廢水過程中的產(chǎn)電特性研究[D];哈爾濱工業(yè)大學(xué);2008年
,本文編號:1904168
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1904168.html