高速鐵路牽引網(wǎng)防雷的研究
本文選題:高速鐵路 + 繞擊閃絡(luò)率; 參考:《蘭州交通大學(xué)》2014年碩士論文
【摘要】:隨著我國高速鐵路的快速發(fā)展,牽引供電系統(tǒng)的安全問題越來越得到重視。近年來高鐵遭受雷擊的事故頻有發(fā)生,為了最大限度地避免雷擊給鐵路運行帶來影響,高速鐵路牽引網(wǎng)雷電防護的課題應(yīng)得到更多的關(guān)注。 首先,對雷電機理以及雷電參數(shù)等基礎(chǔ)理論知識進行詳細闡述。同時介紹計算線路繞擊跳閘率的方法,并對應(yīng)用情況以及每種方法的優(yōu)缺點進行簡單介紹。 其次,在工程防雷計算中,應(yīng)用EGM(Electrical Geometry Model,電氣幾何模型)理論為基礎(chǔ)的繞擊跳閘率計算方法主要有暴露距離計算方法和暴露弧投影計算方法。但是暴露距離計算方法,不考慮雷電先導(dǎo)帶有入射角的情況,使得計算結(jié)果和實際雷擊情況不相符;暴露弧投影計算由于將弧線當(dāng)成直線來進行投影,使得它的計算結(jié)果偏大。應(yīng)對這些不足,在考慮存在高架橋路段以及雷電先導(dǎo)帶有入射角的情況下,建立高速鐵路的EGM,并將暴露距離的概念延伸至帶有入射角度的EGM中,從而得到高速鐵路的受雷面積,由此推導(dǎo)出雷電先導(dǎo)以某一雷電入射角繞擊高速鐵路時的繞擊閃絡(luò)率公式,通過計算,得出入射角對高速鐵路繞擊閃絡(luò)率的影響。 同時,論文根據(jù)所推導(dǎo)出來的雷電繞擊入射角范圍,以及雷電先導(dǎo)以某一確定入射角繞擊高速鐵路時的閃絡(luò)率,對在繞擊范圍內(nèi)的單個繞擊閃絡(luò)率進行累加,從而得到雷電入射角改變時在整個平面內(nèi)改變時,高速鐵路繞擊閃絡(luò)率計算公式。通過計算、比較,改進暴露距離模型后的計算方法克服了暴露弧投影計算結(jié)果偏大的缺點,同時相比暴露距離更接近雷擊實際情況,為高速鐵路牽引網(wǎng)防雷提供重要參考作用。 最后,借助PSCAD軟件,建立仿真模型,,對接觸線的耐雷水平進行仿真統(tǒng)計,得到支柱沖擊接地電阻,高架橋高度,有無裝設(shè)避雷器等因素對接觸網(wǎng)耐雷水平造成的影響。并在基于EGM的基礎(chǔ)上提出考慮高架橋高度時避雷線的合適架設(shè)高度公式。根據(jù)計算和仿真結(jié)果,給高速鐵路防雷提出建議。
[Abstract]:With the rapid development of high-speed railway in China, more and more attention has been paid to the safety of traction power supply system. In recent years, the accidents of high-speed railway suffered by lightning strike occur frequently. In order to avoid the impact of lightning strike on railway operation to the maximum extent, the subject of lightning protection of high-speed railway traction network should be paid more attention to. Firstly, the basic theoretical knowledge of lightning mechanism and lightning parameters are described in detail. At the same time, this paper introduces the method of calculating the tripping rate, and introduces the application and the advantages and disadvantages of each method. Secondly, in the calculation of lightning protection in engineering, the calculation methods of tripping rate based on the theory of EGM(Electrical Geometry Model mainly include the calculation method of exposure distance and the method of projection calculation of exposed arc. However, the calculation method of exposure distance does not consider the situation that the lightning pilot has an incident angle, which makes the calculation result not consistent with the actual lightning stroke. Because the arc is projected as a straight line, the calculation result of the exposed arc projection is too large. To deal with these shortcomings, considering the existence of viaduct section and lightning forerunner with incident angle, the EGMs of high-speed railway are established, and the concept of exposed distance is extended to EGM with incident angle, thus the lightning area of high-speed railway is obtained. This paper derives the formula of flashover rate when lightning forerunner strikes high speed railway with a certain lightning incident angle, and through calculation, the influence of incident angle on flashover rate of high speed railway is obtained. At the same time, according to the range of incidence angle and the flashover rate of lightning forerunner in a certain incident angle, the single flashover rate is accumulated in the range. The formula for calculating the flashover rate of high speed railway is obtained when the incident angle of lightning changes in the whole plane. Through calculation and comparison, the calculation method after improving the model of exposure distance overcomes the shortcoming that the calculation result of exposure arc projection is too large, and at the same time, it is closer to the actual situation of lightning stroke than the exposed distance, which provides an important reference for the lightning protection of traction network of high-speed railway. Finally, with the help of PSCAD software, the simulation model is established, and the lightning resistance of the contact line is simulated. The impact grounding resistance of the pole, the height of the viaduct and the lightning arrester are obtained, which affect the lightning resistance of the catenary. On the basis of EGM, the suitable height formula of lightning protection line considering the height of viaduct is put forward. According to the results of calculation and simulation, some suggestions on lightning protection of high speed railway are put forward.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:U229;TM862
【參考文獻】
相關(guān)期刊論文 前10條
1 趙玉龍;劉光斌;余志勇;;雷電流數(shù)學(xué)模型MATLAB仿真分析[J];安全與電磁兼容;2012年01期
2 張飛舟,陳亞洲,魏明,劉尚合;雷電電流的脈沖函數(shù)表示[J];電波科學(xué)學(xué)報;2002年01期
3 李瑞芳;吳廣寧;曹曉斌;馬御棠;劉平;蘇杰;;雷電流幅值概率計算公式[J];電工技術(shù)學(xué)報;2011年04期
4 樊春雷;郭小霞;李漢卿;;高速鐵路暫態(tài)模型搭建與仿真分析[J];電氣化鐵道;2011年05期
5 郭小霞;樊春雷;;高速鐵路雷擊跳閘率的研究[J];電氣化鐵道;2011年06期
6 王巨豐;劉峗;黎彬;陸俊杰;;基于向量電氣幾何模型的輸電線路繞擊耐雷性能研究[J];電網(wǎng)技術(shù);2008年S2期
7 杜澍春;關(guān)于輸電線路防雷計算中若干參數(shù)及方法的修改建議[J];電網(wǎng)技術(shù);1996年12期
8 司馬文霞,陳寧,許高峰,顧樂觀;高桿塔大跨越輸電線路防雷保護[J];重慶大學(xué)學(xué)報(自然科學(xué)版);2002年09期
9 李曉嵐;尹小根;何俊佳;;擊距系數(shù)的實驗研究與理論分析[J];高電壓技術(shù);2008年01期
10 維列夏金,吳維韓;俄羅斯超高壓和特高壓輸電線路防雷運行經(jīng)驗分析[J];高電壓技術(shù);1998年02期
本文編號:1861747
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1861747.html