銀納米顆粒的制備及其對硅太陽電池性能的影響研究
本文選題:銀納米顆粒 + 銀鏡反應(yīng); 參考:《陜西師范大學(xué)》2014年碩士論文
【摘要】:硅由于豐富性、無毒性和穩(wěn)定性,是用于光伏的首選材料。太陽電池的薄膜化可降低電池材料成本,但是薄膜太陽電池對光的吸收較低,導(dǎo)致電池效率不高。硅薄膜電池中光吸收低的主要原因有兩個(gè)方面:1.電池表面相當(dāng)多的光反射損失;2.硅膜較薄而導(dǎo)致的透射光損失。在電池表面制備銀納米顆粒,利用銀納米顆粒的等離子體效應(yīng),增強(qiáng)對光的散射,從而增加光在電池里的光程,進(jìn)而增加電池對光的吸收,提高電池效率。 本論文主要包括兩個(gè)部分:第一部分研究了用一次銀鏡反應(yīng)和退火制備銀納米顆粒。該部分分為兩組,第一組用一次銀鏡反應(yīng),通過控制反應(yīng)時(shí)間制備不同厚度的銀納米薄膜,將已制備好的納米薄膜在氮?dú)庵?00℃退火1小時(shí)形成銀納米顆粒;第二組將用一次銀鏡反應(yīng)制備的銀納米薄膜在空氣中不同的電場強(qiáng)度輔助下350℃退火1小時(shí)形成不同尺寸分布的銀納米顆粒。第二部分研究了用二次銀鏡反應(yīng)和二次退火制備銀納米顆粒。使用各種儀器(XRD、SEM、AFM、光散射儀以及紫外可見近紅外分光光度計(jì))對制備好的樣品(銀納米顆粒)進(jìn)行了結(jié)構(gòu)、形貌和光學(xué)特性研究。使用太陽能模擬器(AM1.5)研究了銀納米顆粒的形貌對電池的光電轉(zhuǎn)換性能的影響。得出以下結(jié)論: 1.從XRD研究結(jié)果可以看出,對于所有樣品來說,在20=38.6°處都有一個(gè)很強(qiáng)的衍射峰。隨著銀膜厚度的增加,(111)晶面的衍射峰強(qiáng)度變強(qiáng),表明銀納米顆粒的結(jié)晶度增加; 2.通過控制溶液的反應(yīng)時(shí)間可以控制銀薄膜的厚度,研究得出銀納米顆粒的尺寸隨著銀膜厚度的增加而增加; 3.前散射特性結(jié)果表明,20nm厚的銀薄膜制備的銀納米顆粒的散射光始終較強(qiáng),顆粒平均尺寸為130nm; 4.背散射特性研究結(jié)果表明,40nm厚的銀薄膜制備的銀納米顆粒的散射光在大角度范圍內(nèi)(25°-90°)較強(qiáng),顆粒平均尺寸為320nm; 5.透射光譜研究表明,較厚銀薄膜制備的銀納米顆粒的樣品的有較低的透射率。銀薄膜的厚度為5nm時(shí)制備的銀納米顆粒有最高透射率,整個(gè)波長范圍平均達(dá)到92%; 6.電流電壓特性研究表明,將具有銀納米顆粒的玻璃片放在晶體硅太陽電池表面,電池電流密度從28.4mA/cm2增加到28.6mA/cm2,開路電壓基本保持不變,電池效率從12.9%增加到13.1%。將銀納米顆粒直接制備在硅太陽電池表面,電池電流密度從28.4mA/cm2增加到32.6mA/cm2,電池效率從12.9%增加到14.4%。
[Abstract]:Because of its richness, innocuity and stability, silicon is the preferred material for photovoltaic. The thin film of the solar cell can reduce the cost of the battery material, but the absorption of light by the thin film solar cell is low, which leads to the low efficiency of the battery. The main reasons for the low absorption of light in the silicon thin film battery are two aspects: 1. a considerable amount of light reflection loss on the surface of the battery. The transmission light loss caused by the thin film of 2. silicon membrane is lost. The silver nanoparticles are prepared on the surface of the battery, and the light scattering is enhanced by the plasma effect of the silver nanoparticles. Thus the light path in the battery is increased, and then the absorption of light in the battery is increased and the efficiency of the battery is increased.
This paper mainly consists of two parts: the first part studies the preparation of silver nanoparticles by one silver mirror reaction and annealing. This part is divided into two groups. The first group uses a silver mirror reaction to prepare silver nanometers with different thickness by controlling the reaction time. The prepared nanometers are annealed at 400 C in nitrogen for 1 hours to form silver nanoparticles. The second groups of silver nanometers prepared by a single silver mirror reaction were annealed at 350 degrees centigrade in the air for 1 hours for 1 hours to form silver nanoparticles with different sizes. The second part studied the preparation of silver nanoparticles by two silver mirrors and two annealing. The use of various instruments (XRD, SEM, AFM, light scatterometer, and light scatterometer) The structure, morphology and optical properties of the prepared samples (silver nanoparticles) were studied by the ultraviolet visible near infrared spectrophotometer. The influence of the morphology of the silver nanoparticles on the photoelectric conversion performance of the battery was studied by using the solar simulator (AM1.5). The following conclusions were drawn:
1. from the results of XRD, it can be seen that for all samples, there is a strong diffraction peak at 20=38.6 degrees. With the increase of the thickness of the silver film, the intensity of the diffraction peak of (111) is stronger, indicating the increase of the crystallinity of the silver nanoparticles.
2. the thickness of silver film can be controlled by controlling the reaction time of the solution. It is found that the size of silver nanoparticles increases with the increase of the thickness of silver film.
3. the results of pre scattering properties show that the scattering light of silver nanoparticles prepared by 20nm thick silver film is always stronger and the average particle size is 130nm.
The results of 4. back scattering characteristics show that the scattering light of silver nanoparticles prepared by 40nm thick silver film is stronger in a large angle range (25 degree -90 degree), and the average size of the particle is 320nm.
The 5. transmission spectra show that the silver nanoparticles prepared by the thick silver film have lower transmittance. The silver nanoparticles have the highest transmittance when the thickness of the silver film is 5nm, and the average wavelength range is 92%.
The study of 6. current and voltage characteristics shows that the glass slices with silver nanoparticles are placed on the surface of the crystalline silicon solar cell. The current density of the battery is increased from 28.4mA/cm2 to 28.6mA/cm2. The open circuit voltage is basically kept unchanged, the cell efficiency is increased from 12.9% to 13.1%., and the silver nanoparticles are directly prepared on the surface of the silicon solar cell. The current density of the battery is from 28.. 4mA/cm2 increased to 32.6mA/cm2, and battery efficiency increased from 12.9% to 14.4%.
【學(xué)位授予單位】:陜西師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TB383.1;TM914.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 張群芳;朱美芳;劉豐珍;周玉琴;;高效率n-nc-Si:H/p-c-Si異質(zhì)結(jié)太陽能電池[J];半導(dǎo)體學(xué)報(bào);2007年01期
2 張學(xué)會;劉崢;;脈沖電沉積法制備納米材料的研究進(jìn)展[J];材料保護(hù);2009年06期
3 李新利;盧景霄;李瑞;;微晶硅p-i-n薄膜太陽電池研究進(jìn)展[J];功能材料;2010年05期
4 李行志,胡樹兵;等離子噴涂的發(fā)展及其應(yīng)用[J];湖北汽車工業(yè)學(xué)院學(xué)報(bào);2004年02期
5 BAI YiMing;WANG Jun;YIN ZhiGang;CHEN NuoFu;ZHANG XingWang;FU Zhen;YAO JianXi;LI Ning;HE HaiYang;GULI MiNa;;Ag nanoparticles preparation and their light trapping performance[J];Science China(Technological Sciences);2013年01期
6 閆齊齊;秦文靜;王超;宋朋飛;丁國靜;楊利營;印壽根;;Plasmon-enhanced polymer bulk heterojunction solar cells with solution-processable Ag nanoparticles[J];Optoelectronics Letters;2011年06期
7 韓濤;孟凡英;張松;汪建強(qiáng);程雪梅;;銀納米顆粒減反射特性的理論研究[J];物理學(xué)報(bào);2011年02期
,本文編號:1808792
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1808792.html