空間太陽能發(fā)電站聚光器的研究和設(shè)計(jì)
本文選題:SPS-ALPHA + 聚光器; 參考:《西安電子科技大學(xué)》2015年碩士論文
【摘要】:隨著世界人口的增長及工業(yè)的發(fā)展,人類對能源的需求與日俱增,但人類主要依賴的化石能源逐漸枯竭,環(huán)境污染問題和氣候問題變得更加嚴(yán)重。這種矛盾在未來會變得更加突出。尋找新能源來替代傳統(tǒng)的化石能源變得刻不容緩?臻g太陽能相對地面太陽能、風(fēng)能、水能、核能等其他新能源具有儲量巨大、安全、持續(xù)穩(wěn)定的優(yōu)點(diǎn)。美國的曼金斯教授2011年提出了解決空間太陽能發(fā)電的一種新的方案:SPS-ALPHA(Solar Power Satellite via Arbitrarily Large Phased Array),即任意大型相控陣太陽能衛(wèi)星。但對外公開的資料并沒有SPS-ALPHA具體的實(shí)現(xiàn)過程。本文的目的就是在研究SPS-ALPHA的基礎(chǔ)上設(shè)計(jì)出SPS-ALPHA聚光器并實(shí)現(xiàn)它的建模和仿真,最終能夠在光伏板上得到高聚光比和高均勻度的光斑。首先,在詳細(xì)分析了SPS-ALPHA的結(jié)構(gòu)的基礎(chǔ)上,對聚光器主鏡的母線方程參數(shù)進(jìn)行優(yōu)化。在matlab中建立SPS-ALPHA三維模型,截取一天內(nèi)整點(diǎn)時(shí)刻的等效照射面積,通過圖像處理的方法計(jì)算出其面積,當(dāng)總面積最大的時(shí)候,母線方程的參數(shù)即最優(yōu);并分析了同層反射鏡和上下層反射鏡之間的制約關(guān)系。其次,針對SPS-ALPHA大規(guī)模建模問題,提出了利用Solid Works二次開發(fā)技術(shù)建立SPS-ALPHA聚光器主鏡的模型,實(shí)現(xiàn)自動化建模;利用Optis Works光學(xué)仿真軟件在Solid Works環(huán)境下對SPS-ALPHA進(jìn)行光學(xué)仿真,實(shí)現(xiàn)了SPS-ALPHA建模仿真的一體化。然后,提出了確定聚光器主焦點(diǎn)的方法。在二次鏡母線為拋物線和雙曲線的基礎(chǔ)下,分析了次鏡焦距和主焦點(diǎn)的關(guān)系,建立SPS-ALPHA的物理數(shù)學(xué)模型,利用蒙特卡洛光線追跡方法優(yōu)化出聚光器主焦點(diǎn),從而確定次鏡的焦距,并在Solid Works中用OptisWorks仿真驗(yàn)證結(jié)果的正確性。最后,在Solid Works中,對聚光器模型的每層塊數(shù)和板間距進(jìn)行對比優(yōu)化,確定最佳值,使光斑能流密度最大,均勻度較好。
[Abstract]:With the growth of world population and the development of industry, the demand for energy is increasing. However, the fossil energy which is mainly relied on by man is gradually exhausted, and the problems of environmental pollution and climate become more and more serious. This contradiction will become more prominent in the future. It is urgent to find new energy to replace the traditional fossil energy. Compared with other new energy sources, such as surface solar energy, wind energy, water energy, nuclear energy and so on, space solar energy has the advantages of huge reserves, safety and stability. In 2011, Professor Mankins of the United States proposed a new scheme to solve the problem of space solar power generation:: SPS-ALPHAA Solar Power Satellite via Arbitrarily Large Phased Arrayn, that is, any large phased array solar satellite. However, there is no specific implementation process of SPS-ALPHA in the public information. The purpose of this paper is to design a SPS-ALPHA concentrator based on the research of SPS-ALPHA, and to realize its modeling and simulation. Finally, the spot with high concentration ratio and high uniformity can be obtained on the photovoltaic panel. Firstly, based on the detailed analysis of the structure of SPS-ALPHA, the parameters of busbar equation of concentrator primary mirror are optimized. The SPS-ALPHA 3D model is established in matlab, and the equivalent irradiating area at the whole point in a day is cut off. The area is calculated by image processing method. When the total area is the largest, the parameters of the busbar equation are optimal. The relationship between the mirror and the mirror is analyzed. Secondly, aiming at the problem of large-scale modeling of SPS-ALPHA, the model of primary mirror of SPS-ALPHA concentrator is established by using Solid Works secondary development technology, and the automatic modeling is realized, and the optical simulation of SPS-ALPHA is carried out under the environment of Solid Works by using Optis Works optical simulation software. The integration of SPS-ALPHA modeling and simulation is realized. Then, a method to determine the main focus of the concentrator is proposed. Based on the parabola and hyperbolic of the secondary mirror bus, the relationship between the focal length of the secondary mirror and the main focus is analyzed, and the physical mathematical model of SPS-ALPHA is established. The main focal point of the concentrator is optimized by the Monte Carlo ray tracing method, and the focal length of the secondary mirror is determined. The correctness of the results is verified by OptisWorks simulation in Solid Works. Finally, in Solid Works, the number of blocks in each layer and the plate spacing of the concentrator model are compared and optimized, and the optimum value is determined, so that the energy flow density of the spot is maximum and the uniformity is better.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TM615;TK513.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 沈煥波;付杰;李心;李曉波;李建華;徐能;;基于二次反射的光學(xué)系統(tǒng)聚光特性研究[J];太陽能;2015年01期
2 呂濤;張景旭;付東輝;陳小云;劉杰;;一種高準(zhǔn)直的太陽模擬器設(shè)計(jì)[J];太陽能學(xué)報(bào);2014年06期
3 毛悅;宋小勇;賈小林;吳顯兵;;北斗導(dǎo)航衛(wèi)星地影狀態(tài)分析[J];測繪學(xué)報(bào);2014年04期
4 孟憲龍;陳學(xué);夏新林;戴貴龍;;空間對稱型二次反射太陽能聚集系統(tǒng)能量傳輸特性[J];宇航學(xué)報(bào);2013年09期
5 馬宏財(cái);金光;鐘興;任秉文;;基于蒙特卡羅法的太陽能聚光接收器布局及形狀優(yōu)化設(shè)計(jì)[J];光學(xué)學(xué)報(bào);2013年03期
6 唐小村;;基于TracePro的光學(xué)仿真實(shí)驗(yàn)教學(xué)[J];實(shí)驗(yàn)技術(shù)與管理;2013年01期
7 劉鋒;黃建華;陳軍;李翔;陳寧;吳春健;;溫度對晶體硅太陽電池模型參數(shù)的影響[J];太陽能學(xué)報(bào);2012年07期
8 龔勝平;李俊峰;寶音賀西;羅鎮(zhèn);;太陽帆繞地球周期軌道研究[J];宇航學(xué)報(bào);2012年05期
9 范斌;紫曉;;中國科學(xué)家提出空間太陽能電站發(fā)展技術(shù)“路線圖”(下)——寫在空間太陽能電站發(fā)展技術(shù)研討會上[J];中國航天;2011年01期
10 吳元敏;;基于Freeman鏈碼的圖像中多個(gè)區(qū)域面積的計(jì)算方法[J];計(jì)算機(jī)工程與應(yīng)用;2008年15期
,本文編號:1796407
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1796407.html