基于原子分解快速算法的電能質(zhì)量擾動檢測與分類研究
本文選題:電能質(zhì)量 + 擾動檢測與分類; 參考:《燕山大學(xué)》2015年碩士論文
【摘要】:目前,智能化精密儀表的廣泛運用,對供電質(zhì)量提出了更加嚴(yán)格的要求;同時由于大量擾動負(fù)荷接入電網(wǎng)或其它擾動源存在,使得供電質(zhì)量問題日益凸顯。因此,研究分析電能質(zhì)量擾動信號具有非常重要的意義。本文采用原子分解技術(shù)來分析各種電能質(zhì)量擾動信號。為克服傳統(tǒng)原子分解技術(shù)存在計算量過大的不足,本文將原子離散參數(shù)連續(xù)化,大大減少重構(gòu)信號需要的原子數(shù)且使迭代結(jié)果更準(zhǔn)確;針對頻率范圍較大的諧波、衰減振蕩等擾動信號,采用快速傅里葉變換對最優(yōu)原子頻率進行預(yù)求解,從而降低原子庫的規(guī)模;采用粒子群算法及遺傳算法對匹配追蹤算法進行優(yōu)化。仿真算例表明,粒子群優(yōu)化匹配追蹤算法的性能優(yōu)于遺傳算法優(yōu)化匹配追蹤算法。采用粒子群優(yōu)化的匹配追蹤算法及基于擾動信號特征的連續(xù)相關(guān)原子庫,對6種單一電能質(zhì)量擾動(暫降信號、暫升信號、閃變信號、諧波、衰減振蕩、尖峰信號)進行分析。仿真研究表明,該方法可快速準(zhǔn)確地提取電能質(zhì)量信號的擾動特征,且有較好的抗噪性能。由于連續(xù)相關(guān)原子庫具有針對性,所以本文采用連續(xù)相關(guān)原子庫及粒子群優(yōu)化的匹配追蹤算法對擾動信號進行分類。通過多重擾動信號的仿真算例驗證,該分類方法可以很好的完成擾動信號的分類,并獲取擾動信號的所有參數(shù)。
[Abstract]:At present, with the wide application of intelligent precision instruments, the quality of power supply is required more strictly, and the problem of power supply quality is becoming more and more serious because a large number of disturbance loads are connected to the power network or other disturbance sources. Therefore, it is very important to study and analyze the power quality disturbance signal. In this paper, atomic decomposition technique is used to analyze various power quality disturbance signals. In order to overcome the disadvantages of the traditional atomic decomposition technique, the discrete parameters of atoms are continuous, which greatly reduces the number of atoms needed to reconstruct the signal and makes the iterative results more accurate. The fast Fourier transform (FFT) is used to pre-solve the optimal atomic frequency so as to reduce the scale of atomic library. Particle swarm optimization and genetic algorithm are used to optimize the matching and tracking algorithm. Simulation results show that the performance of particle swarm optimization matching tracking algorithm is better than that of genetic algorithm. Using the matching tracking algorithm of particle swarm optimization and the continuous correlation atomic library based on the characteristic of disturbance signal, six kinds of single power quality disturbances (sag signal, hoisting signal, flicker signal, harmonic wave, attenuation oscillation, peak signal) are analyzed. The simulation results show that the proposed method can extract the disturbance characteristics of power quality signals quickly and accurately, and has good anti-noise performance. Because of the pertinence of the continuous correlation atom library, this paper uses the continuous correlation atomic library and the matching tracking algorithm of particle swarm optimization to classify the disturbance signal. The simulation results show that the classification method can achieve the classification of the disturbance signal and obtain all the parameters of the disturbance signal.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TM711
【參考文獻】
相關(guān)期刊論文 前10條
1 全惠敏;戴瑜興;;基于S變換模矩陣的電能質(zhì)量擾動信號檢測與定位[J];電工技術(shù)學(xué)報;2007年08期
2 王麗霞;何正友;趙靜;;一種基于線性時頻分布和二進制閾值特征矩陣的電能質(zhì)量分類方法[J];電工技術(shù)學(xué)報;2011年04期
3 管春;周雒維;盧偉國;;基于多標(biāo)簽RBF神經(jīng)網(wǎng)絡(luò)的電能質(zhì)量復(fù)合擾動分類方法[J];電工技術(shù)學(xué)報;2011年08期
4 賈清泉;于連富;董海艷;王寧;田杰;;應(yīng)用原子分解的電能質(zhì)量擾動信號特征提取方法[J];電力系統(tǒng)自動化;2009年24期
5 趙靜;何正友;錢清泉;;一種識別混合電能質(zhì)量擾動的新方法[J];電力系統(tǒng)自動化;2011年03期
6 黃艷玲;司馬文霞;楊慶;袁濤;王荊;;基于實測數(shù)據(jù)的電力系統(tǒng)過電壓分類識別[J];電力系統(tǒng)自動化;2012年04期
7 郭輝;傅成華;何春芳;;基于短時傅里葉變換的電壓間諧波分析[J];電力系統(tǒng)通信;2008年04期
8 楊洪耕,肖先勇,劉俊勇;電能質(zhì)量問題的研究和技術(shù)進展(一)——電能質(zhì)量一般概念[J];電力自動化設(shè)備;2003年10期
9 易吉良;彭建春;;基于廣義S變換的短時電能質(zhì)量擾動信號分類[J];電網(wǎng)技術(shù);2009年05期
10 李明;張葛祥;王曉茹;;時頻原子方法在間諧波分析中的應(yīng)用[J];電網(wǎng)技術(shù);2009年17期
相關(guān)碩士學(xué)位論文 前1條
1 李立超;基于稀疏分解算法的地震信號去噪研究[D];東北石油大學(xué);2014年
,本文編號:1796226
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1796226.html