變速運行的定子雙繞組異步發(fā)電機(jī)系統(tǒng)研究
本文選題:定子雙繞組異步發(fā)電機(jī) + 變速 ; 參考:《南京航空航天大學(xué)》2014年博士論文
【摘要】:異步電機(jī)因具有結(jié)構(gòu)簡單、運行可靠、成本低、維護(hù)方便等優(yōu)點,作為電動機(jī)被廣泛用于各類調(diào)速、牽引、驅(qū)動等場合。根據(jù)電機(jī)可逆原理,異步電機(jī)當(dāng)然也可發(fā)電運行,當(dāng)發(fā)電機(jī)使用。異步電機(jī)發(fā)電技術(shù)應(yīng)用最廣泛、最重要的兩個領(lǐng)域就是風(fēng)力發(fā)電領(lǐng)域和獨立電源領(lǐng)域。近年來,這兩個領(lǐng)域發(fā)展都很快,也越來越受重視,而且還出現(xiàn)了許多新的需求,這既為異步發(fā)電機(jī)系統(tǒng)帶來了更多的機(jī)遇,同時也對其提出了一些新的挑戰(zhàn)。為適應(yīng)海上風(fēng)力發(fā)電和大型飛機(jī)變頻交流電源的發(fā)展,并滿足其對發(fā)電系統(tǒng)的新需求,本文對變速運行的新型定子雙繞組異步發(fā)電機(jī)(DWIG)系統(tǒng)進(jìn)行了深入細(xì)致的研究。該發(fā)電機(jī)的轉(zhuǎn)子為鼠籠型,是天然無刷結(jié)構(gòu),簡單堅固,其定子上布置有兩套繞組,一套稱為功率繞組,接有勵磁電容,可直接輸出恒壓變頻交流電能或經(jīng)整流輸出直流電能;另一套稱為控制繞組,經(jīng)濾波電感接有靜止勵磁變換器(SEC),用以調(diào)節(jié)發(fā)電機(jī)勵磁無功。本文具體研究內(nèi)容和成果主要包括以下幾方面:(1)DWIG數(shù)學(xué)模型建立了DWIG在三相靜止A-B-C坐標(biāo)系和三相正交旋轉(zhuǎn)d-q-0坐標(biāo)系下的數(shù)學(xué)模型,能滿足不同電能輸出形式的DWIG發(fā)電機(jī)系統(tǒng)的研究需要。(2)變速運行的DWIG發(fā)電系統(tǒng)控制策略為進(jìn)一步豐富和完善DWIG發(fā)電系統(tǒng)的電壓控制理論,拓寬其應(yīng)用范圍,提出了一種與之相適應(yīng)的轉(zhuǎn)差頻率控制策略,它利用控制繞組側(cè)SEC來快速改變施加在控制繞組上的電壓的頻率和幅值,以對控制繞組磁鏈旋轉(zhuǎn)速度和幅值進(jìn)行快速調(diào)節(jié),進(jìn)而改變發(fā)電機(jī)的轉(zhuǎn)差頻率和勵磁無功,實現(xiàn)在調(diào)節(jié)發(fā)電機(jī)無功的同時,還能主動對發(fā)電機(jī)的有功變化加以控制,使系統(tǒng)輸入、輸出功率快速平衡,從而達(dá)到改善系統(tǒng)動靜態(tài)性能的目的。該控制策略實現(xiàn)起來較為簡單,無需復(fù)雜的坐標(biāo)變換和影響動態(tài)性能的電流環(huán),既能適應(yīng)直流輸出,也能適應(yīng)變頻交流輸出。樣機(jī)實驗結(jié)果表明,該控制策略的動靜態(tài)性能要優(yōu)于現(xiàn)有的三種控制策略。(3)變速運行的DWIG發(fā)電系統(tǒng)勵磁電容和濾波電感的優(yōu)化選取通過分析控制繞組無功電流變化規(guī)律,獲得了變速運行的DWIG發(fā)電系統(tǒng)勵磁電容優(yōu)化的一般原則,即保證控制繞組無功電流正向最大值和負(fù)向最小值的絕對值相等,但由于不同應(yīng)用場合中DWIG發(fā)電系統(tǒng)的控制繞組無功電流變化規(guī)律有所不同,相應(yīng)地勵磁電容優(yōu)化的具體原則也有所區(qū)別,并對此進(jìn)行了分析。變速運行的DWIG發(fā)電系統(tǒng)濾波電感的選取除滿足較快的電流響應(yīng)速度和較強(qiáng)的電流脈動抑制能力這兩個基本要求之外,還應(yīng)保證勵磁變換器能提供足夠大的無功電流,其具體優(yōu)化方法是,按電流響應(yīng)的快速性和控制繞組最大無功電流來確定濾波電感的上限值;按抑制電流脈動能力來確定濾波電感的下限值。樣機(jī)實驗結(jié)果表明,按所提優(yōu)化方法選取的勵磁電容和濾波電感,不僅能保證系統(tǒng)在一定的變速范圍內(nèi)穩(wěn)定運行,而且還實現(xiàn)了控制繞組無功容量的最小化,能有效減小SEC容量。(4)寬變速運行的DWIG直流發(fā)電系統(tǒng)及其在風(fēng)力發(fā)電中的應(yīng)用針對擴(kuò)大發(fā)電系統(tǒng)能輸出額定電壓的轉(zhuǎn)速范圍的迫切需求,提出了一種寬變速運行的DWIG直流發(fā)電系統(tǒng)。分析了該發(fā)電系統(tǒng)的拓?fù)浣Y(jié)構(gòu)及高轉(zhuǎn)速、低轉(zhuǎn)速兩種運行模式的工作原理;推導(dǎo)并獲得了控制繞組和功率繞組之間的匝數(shù)比關(guān)系;分析了低轉(zhuǎn)速運行模式下輸出電壓的泵升原理和控制方法;提出了一種基于控制繞組繞組磁鏈定向的寬變速運行的控制策略,并有效解決了高轉(zhuǎn)速、低轉(zhuǎn)速兩種運行模式下控制策略的兼容性和平滑過渡問題。為能有效利用低風(fēng)速區(qū)的風(fēng)能,對所提出的寬變速運行的DWIG直流發(fā)電系統(tǒng)低速輕載運行時效率優(yōu)化問題進(jìn)行了研究。在分析DWIG效率優(yōu)化控制基本原理的基礎(chǔ)上,提出了一種基于DWIG損耗模型的效率優(yōu)化控制策略,并給出了具體實現(xiàn)方法。樣機(jī)實驗結(jié)果表明,該發(fā)電系統(tǒng)能在包括低轉(zhuǎn)速區(qū)在內(nèi)的寬轉(zhuǎn)速范圍內(nèi)輸出恒定的額定電壓;所提出的效率優(yōu)化控制策略能大幅提高系統(tǒng)低速輕載運行時的效率;將該發(fā)電系統(tǒng)應(yīng)用于風(fēng)力發(fā)電中,不僅能實現(xiàn)寬風(fēng)速范圍內(nèi)發(fā)電,而且還能有效利用低風(fēng)速區(qū)的風(fēng)能。(5)大型飛機(jī)用DWIG變頻交流發(fā)電系統(tǒng)帶不同負(fù)載的運行性能針對大型飛機(jī)變頻交流電源的特點和要求,提出了一種大型飛機(jī)用DWIG變頻交流發(fā)電系統(tǒng)方案,并對其帶不同負(fù)載的運行性能進(jìn)行了研究。為提高DWIG變頻交流發(fā)電系統(tǒng)帶感性和容性負(fù)載時的運行性能,尤其是動態(tài)性能,提出了一種含負(fù)載無功信息的轉(zhuǎn)差頻率控制策略,并給出了具體實現(xiàn)方法。樣機(jī)仿真和實驗結(jié)果均表明,采用所提出的控制策略,系統(tǒng)帶感性負(fù)載和容性負(fù)載時具有良好的動靜態(tài)性能,能滿足美軍標(biāo)MIL-STD-704F的要求。針對帶不對稱負(fù)載的DWIG變頻交流發(fā)電系統(tǒng)的特殊性,以對稱分量法為基礎(chǔ),提出了一種基于負(fù)載三端口網(wǎng)絡(luò)模型的不對稱分析方法,并給出了具體實現(xiàn)步驟,實現(xiàn)了對該發(fā)電系統(tǒng)帶不對稱負(fù)載運行性能的定量分析。在典型阻—容型復(fù)合不對稱負(fù)載情況下,樣機(jī)實驗結(jié)果表明,該發(fā)電系統(tǒng)對不對稱負(fù)載有很好的適應(yīng)能力,能滿足美軍標(biāo)MIL-STD-704F的要求。另外,還在該阻—容型復(fù)合不對稱負(fù)載情況下,利用所提出的不對稱分析方法,分析了關(guān)鍵電機(jī)參數(shù)對輸出電壓不平衡的影響。
[Abstract]:Asynchronous motor has the advantages of simple structure, reliable operation, low cost, convenient maintenance and so on. As an electric motor, it is widely used in various kinds of speed regulating, traction, driving and other occasions. According to the principle of reversible motor, asynchronous motor can also generate electricity. When the generator is used, the application of induction motor is the most widely used, the two most important field is the wind. In the field of power generation and independent power supply. In recent years, these two areas have developed rapidly, and are becoming more and more important, and there are many new needs, which have brought more opportunities for asynchronous generator system and also put forward some new challenges. In this paper, a new type of stator winding asynchronous generator (DWIG) system has been studied in detail. The rotor of the generator is a squirrel cage type, a natural brushless structure, simple and solid, with two sets of windings arranged on the stator, a set of power windings, and excitation capacitors. It can directly output constant voltage variable frequency alternating current energy or rectified output DC power; the other is called control winding, and the filter inductor is connected to static excitation converter (SEC) to adjust the generator excitation reactive power. This paper mainly includes the following aspects: (1) the DWIG mathematical model establishes the DWIG stationary A-B-C coordinate in three phase The mathematical model of the system and the three-phase orthogonal rotating d-q-0 coordinate system can satisfy the research needs of the DWIG generator system with different electrical energy output. (2) the control strategy of the DWIG generation system of the variable speed operation is to further enrich and improve the voltage control theory of the DWIG power generation system, and to broaden its application range. The differential frequency control strategy uses the control winding side SEC to quickly change the frequency and amplitude of the voltage applied to the control winding, so as to quickly adjust the rotation speed and amplitude of the magnetic chain of the control winding, and then change the generator's conversion frequency and excitation reactive power, and can also be active to the generator while regulating the generator's reactive power. In order to improve the dynamic and static performance of the system, the system input and output power are balanced rapidly to achieve the purpose of improving the dynamic and static performance of the system. The control strategy is simple, without complex coordinate transformation and the current loop that affects the dynamic performance, it can adapt to the DC output and can also adapt to the AC output. The experimental results show that The dynamic and static performance of the control strategy is better than the existing three control strategies. (3) the optimization of the excitation capacitance and the filter inductance of the DWIG power generation system of the variable speed operation is to obtain the general principle of the excitation capacitance optimization of the variable speed DWIG power generation system by analyzing the variation of the reactive current of the control winding, that is, the reactive power of the control winding is guaranteed. The absolute value of the flow forward maximum and the negative minimum value is equal, but because of the variation of the reactive current of the control winding of the DWIG power generation system in different applications, the specific principle of the corresponding excitation capacitance optimization is also different, and the selection of the filter inductance of the DWIG power generation system of the variable speed operation is satisfied except for the selection of the filter inductance. In addition to the two basic requirements of fast current response speed and strong current pulsation suppression, the excitation converter should also ensure that the excitation converter can provide sufficient reactive current. The specific optimization method is to determine the upper limit of the filter inductor according to the fast response of the current response and the maximum reactive current of the control winding; and the ability to suppress the current pulsation. To determine the lower limit of the filter inductor, the experimental results show that the excitation capacitance and the filter inductance selected by the proposed optimization method can not only ensure the stable operation of the system in a certain speed range, but also achieve the minimization of the reactive power capacity of the control windings, and can reduce the SEC capacity effectively. (4) the DWIG DC power generation system with wide variable speed operation. The application of the system and its application in wind power generation is in view of the urgent need to expand the speed range of the rated voltage of the power generation system. A DWIG DC power generation system with wide variable speed operation is proposed. The topology of the power generation system and the working principle of two operating modes of high speed and low speed are analyzed, and the control winding and work are derived and obtained. The relation between the turn number ratio between the rate windings, the pump lifting principle and the control method of the output voltage under the low speed operation mode are analyzed, and a control strategy based on the flux orientation of the winding winding is proposed, and the compatibility and smooth transition of the two operating modes under high speed and low speed are effectively solved. In order to effectively utilize wind energy in low wind speed area, the problem of efficiency optimization in low speed and light load operation of DWIG DC power generation system with wide variable speed is studied. Based on the analysis of the basic principle of DWIG efficiency optimization control, an efficiency optimization control strategy based on DWIG loss model is proposed, and the concrete realization formula is given. The experimental results show that the power generation system can output a constant rated voltage within a wide speed range, including low speed zones, and the proposed efficiency optimization control strategy can greatly improve the efficiency of the system at low speed and light load, and the power generation system can be applied to wind power generation, not only in wide wind speed range, but also in wind power generation. And it can also effectively utilize wind energy in low wind speed area. (5) a large aircraft DWIG inverter AC power generation system is proposed for large aircraft with the characteristics and requirements of the variable frequency AC power supply of large aircraft for large aircraft with DWIG variable frequency AC power generation system, and the operation performance of the large aircraft with different loads is studied. In order to improve the performance of the DWIG variable frequency AC power generation system with inductive and capacitive load, especially the dynamic performance, a transfer frequency control strategy with load reactive information is proposed, and the concrete realization method is given. The simulation and experimental results of the prototype show that the proposed control strategy is adopted for the system with perceptual load and capacitive load. With good dynamic and static performance, it can meet the requirements of the U.S. military standard MIL-STD-704F. Based on the symmetry component method, an asymmetric analysis method based on the load three port network model is proposed in view of the particularity of the DWIG variable frequency AC power generation system with asymmetrical load, and the concrete realization steps are given, and the power generation system is realized. The quantitative analysis of the operating performance of unsymmetrical loads. The experimental results show that the power generation system has good adaptability to the asymmetric load and can meet the requirements of the US military standard MIL-STD-704F under the typical resistance and capacitive asymmetrical load. The influence of key motor parameters on output voltage imbalance is analyzed.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TM31
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 崔納新,張承慧,杜春水;變頻調(diào)速異步電動機(jī)效率優(yōu)化控制的研究進(jìn)展[J];電工技術(shù)學(xué)報;2004年05期
2 劉陵順,胡育文,黃文新;電力電子變換器控制的異步電機(jī)發(fā)電技術(shù)[J];電工技術(shù)學(xué)報;2005年05期
3 楊順昌;異步發(fā)電機(jī)的研究與應(yīng)用[J];電工技術(shù)雜志;2003年03期
4 施凱;黃文新;胡育文;卜飛飛;;定子雙繞組感應(yīng)電機(jī)風(fēng)力發(fā)電系統(tǒng)的低電壓穿越特性分析[J];電力系統(tǒng)自動化;2012年17期
5 施凱;黃文新;胡育文;卜飛飛;;間接磁場定向控制的定子雙繞組感應(yīng)電機(jī)風(fēng)力發(fā)電系統(tǒng)[J];電力自動化設(shè)備;2012年11期
6 王祥珩;吳新振;;雙繞組多相高速整流異步發(fā)電機(jī)系統(tǒng)的分析[J];中國科學(xué)(E輯:技術(shù)科學(xué));2008年11期
7 施凱;黃文新;胡育文;卜飛飛;;并網(wǎng)型定子雙繞組感應(yīng)風(fēng)力發(fā)電系統(tǒng)的研究[J];太陽能學(xué)報;2013年09期
8 林顯軍;程小華;龍洪宇;;異步電動機(jī)效率優(yōu)化控制策略綜述[J];微電機(jī);2011年07期
9 傅玉,馬偉明,王東,李玉梅,肖飛;新型定子雙繞組自激異步發(fā)電機(jī)的電壓調(diào)節(jié)[J];中國電機(jī)工程學(xué)報;2003年03期
10 王東,馬偉明,顧偉峰,肖飛,張波濤;12/3相雙繞組感應(yīng)發(fā)電機(jī)的諧波不對稱分析[J];中國電機(jī)工程學(xué)報;2004年05期
相關(guān)博士學(xué)位論文 前2條
1 張?zhí)m紅;異步電機(jī)起動/發(fā)電系統(tǒng)研究[D];南京航空航天大學(xué);2006年
2 劉陵順;定子雙繞組感應(yīng)發(fā)電機(jī)的設(shè)計及控制系統(tǒng)的研究[D];南京航空航天大學(xué);2007年
相關(guān)碩士學(xué)位論文 前1條
1 孫豐濤;基于DSP的矢量控制異步電機(jī)效率優(yōu)化控制研究[D];山東大學(xué);2005年
,本文編號:1796075
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1796075.html