平面異質(zhì)結(jié)結(jié)構(gòu)鈣鈦礦太陽電池的研究
發(fā)布時(shí)間:2018-04-03 14:11
本文選題:鈣鈦礦太陽電池 切入點(diǎn):平面異質(zhì)結(jié)結(jié)構(gòu) 出處:《寧波大學(xué)》2015年碩士論文
【摘要】:近年來,以甲胺基鉛碘化合物(CH3NH3PbI3)為代表的有機(jī)-無機(jī)雜化鈣鈦礦材料成為光伏領(lǐng)域的新“明星”;诖祟惒牧系奶栯姵氐哪芰哭D(zhuǎn)換效率經(jīng)過5年的發(fā)展從2009年的3.8%極速攀升到目前新聞報(bào)道的20.1%,效率進(jìn)步之快令人贊嘆。更重要的是,鈣鈦礦原料豐富價(jià)格低廉,可溶液制備大面積、柔性光電器件。針對高質(zhì)量的鈣鈦礦薄膜及太陽電池器件制備的可重復(fù)性差、器件穩(wěn)定性差等問題,我們探索了高質(zhì)量、高覆蓋率、良好可重復(fù)性鈣鈦礦薄膜的制備工藝,實(shí)現(xiàn)了具有高效率、良好可重復(fù)性、較好穩(wěn)定性的平面異質(zhì)結(jié)結(jié)構(gòu)鈣鈦礦太陽電池的制備。本文的主要內(nèi)容:1.通過比較兩種不同的退火方法(一步直接退火法和多步緩慢退火法)制備的CH3NH3PbI3-xClx鈣鈦礦薄膜的結(jié)構(gòu)形貌、光電特性及對應(yīng)器件的光伏性能,我們發(fā)現(xiàn)多步緩慢退火法是一種普適的可以制備高效可重復(fù)的平面異質(zhì)結(jié)結(jié)構(gòu)鈣鈦礦太陽電池的有效方法。采用這種方法制備的平面異質(zhì)結(jié)結(jié)構(gòu)鈣鈦礦太陽電池給出了13.58%的最高效率,相較于一步直接退火法制備的器件8.65%的效率提升了57%。我們提出的優(yōu)化了的退火方法可以保證高質(zhì)量的鈣鈦礦薄膜的可重復(fù)性制備。2.通過進(jìn)一步精細(xì)地控制退火溫度和時(shí)間,我們得到了幾乎100%覆蓋率和晶體高度取向的CH3NH3PbI3-xClx鈣鈦礦薄膜。由此,制備出了平均效率12.0%、最高效率15.17%的平面異質(zhì)結(jié)結(jié)構(gòu)鈣鈦礦太陽電池。高覆蓋率保證了充分的光吸收,避免了可能的短路發(fā)生。高度取向的晶體非常有利于電子和空穴高效地向各自對應(yīng)的電極輸運(yùn)。鑒于此方法制備的薄膜高度的晶體取向性,各向異性的電子傳輸特性模型首次提出用以解釋所觀察到的優(yōu)良的光伏性能。在此制備方法的基礎(chǔ)上,通過對其他功能層的優(yōu)化可以預(yù)期更好的器件性能。3.針對常規(guī)平面異質(zhì)結(jié)結(jié)構(gòu)器件穩(wěn)定性比較差的問題,展開實(shí)驗(yàn)并發(fā)現(xiàn)了部分原因。摻入spiro-Me OTAD中的各種溶劑和溶質(zhì)都多少對鈣鈦礦具有溶解和破壞作用,特別是極易吸濕的鋰鹽(Li-TFSI)通過吸收空氣中的濕氣而對鈣鈦礦進(jìn)而整個(gè)器件性能具有很大的破壞作用,乙腈也有溶解和分解鈣鈦礦的作用。作為替換,采用與spiro-Me OTAD共溶于氯苯的強(qiáng)氧化劑F4-TCNQ作為空穴傳輸層的p型摻雜劑,成功制備出最高效率10.59%的平面異質(zhì)結(jié)結(jié)構(gòu)鈣鈦礦太陽電池,而且器件具有比基于Li-TFSI摻雜spiro-Me OTAD作為空穴傳輸層的同類器件具有更好的穩(wěn)定性。
[Abstract]:In recent years, organic-inorganic hybrid perovskite materials, represented by methylamino lead iodide (Ch _ 3NH _ 3PbI _ 3), have become a new "star" in photovoltaic field.The energy conversion efficiency of solar cells based on such materials has climbed from 3.8 percent in 2009 to 20.1percent in current news reports after five years of development.More importantly, perovskite raw materials are cheap and can be used to prepare large area flexible optoelectronic devices.In order to solve the problems of poor repeatability and stability of high quality perovskite thin films and solar cell devices, we have explored the preparation process of high quality, high coverage and good repeatability perovskite films, and achieved high efficiency.Preparation of planar heterojunction perovskite solar cells with good repeatability and stability.The main content of this paper is: 1.CH3NH3PbI3-xClx perovskite films prepared by two different annealing methods (one step direct annealing method and multi step slow annealing method) were compared in terms of their structure morphology, photoelectric properties and photovoltaic properties of the corresponding devices.We find that the multistep slow annealing method is an effective method for fabricating high efficient and repeatable planar heterojunction perovskite solar cells.The maximum efficiency of the planar heterojunction perovskite solar cells fabricated by this method is 13.58%, which is 57% higher than the 8.65% efficiency of the devices fabricated by one-step direct annealing.The optimized annealing method can guarantee the repeatability of perovskite thin films with high quality.CH3NH3PbI3-xClx perovskite thin films with nearly 100% coverage and high crystal orientation have been obtained by further controlling annealing temperature and time.As a result, a planar heterojunction perovskite solar cell with an average efficiency of 12.0 and a maximum efficiency of 15.17% was prepared.High coverage ensures adequate light absorption and avoids possible short-circuiting.Highly oriented crystals are conducive to the efficient transport of electrons and holes to their respective electrodes.In view of the high crystal orientation of the films prepared by this method, the anisotropic electron transport model is proposed for the first time to explain the observed excellent photovoltaic properties.On the basis of this preparation method, the better device performance. 3 can be expected by optimizing the other functional layers.In order to solve the problem of poor stability of conventional planar heterojunction devices, experiments are carried out and some reasons are found.All kinds of solvents and solutes mixed with spiro-Me OTAD can dissolve and destroy perovskite, especially Li-TFSIs, which are easy to absorb moisture, which can destroy perovskite and the whole device performance by absorbing moisture in air.Acetonitrile also dissolves and decomposes perovskite.Instead, using F4-TCNQ, a strong oxidant co-soluble in chlorobenzene with spiro-Me OTAD, as the p-type dopant of the hole transport layer, a planar heterojunction perovskite solar cell with the highest efficiency of 10.59% was successfully prepared.And the device has better stability than the same device based on Li-TFSI doped spiro-Me OTAD as the hole transport layer.
【學(xué)位授予單位】:寧波大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TM914.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王曉莉,姚熹;復(fù)雜組成鈣鈦礦材料中的納米分相[J];西安交通大學(xué)學(xué)報(bào);1995年09期
2 莊志強(qiáng);王蘊(yùn)輝;施紅陽;;鈮鎂酸鉛類鈣鈦礦結(jié)構(gòu)鐵電多晶體的制備技術(shù)[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);1992年03期
3 趙旭,栗萍,唐貴德,張變芳,禹日程;Nb摻雜對雙鈣鈦礦化合物居里溫度的影響[J];河北師范大學(xué)學(xué)報(bào);2004年04期
4 李福q,
本文編號:1705536
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1705536.html
最近更新
教材專著