分散式風(fēng)電場微觀選址技術(shù)研究及其系統(tǒng)開發(fā)
發(fā)布時間:2018-03-24 21:44
本文選題:分散式風(fēng)電 切入點:微觀選址 出處:《東北大學(xué)》2014年碩士論文
【摘要】:近些年來我國經(jīng)濟(jì)一直保持高速發(fā)展。與此同時,由于能源的不合理利用造成的環(huán)境污染問題也日益嚴(yán)重;诖,我國提出要發(fā)展綠色經(jīng)濟(jì),走可持續(xù)發(fā)展道路。其中,風(fēng)力發(fā)電是能源可持續(xù)發(fā)展的重要支撐,而分散式發(fā)電方式是近些年來利用風(fēng)能的一大特點。在風(fēng)能的實際應(yīng)用中,首先應(yīng)考慮風(fēng)電場的選址問題。場址的選擇對風(fēng)能的利用率和經(jīng)濟(jì)性起到至關(guān)重要的作用。在宏觀選址之后,微觀選址的工作是在選定的小區(qū)域中進(jìn)行風(fēng)力發(fā)電機(jī)組的排列布置,以便使整個風(fēng)電場的輸出功率達(dá)到最大化,具有更好的經(jīng)濟(jì)效益。本文從經(jīng)濟(jì)、技術(shù)和環(huán)境等因素出發(fā),研究了分散式風(fēng)力發(fā)電的微觀選址技術(shù),并且開發(fā)了適用于分散式風(fēng)電場微觀選址的軟件系統(tǒng)。本文首先介紹了風(fēng)資源的基礎(chǔ)知識。在此基礎(chǔ)上,詳細(xì)分析了如何利用風(fēng)速的威布爾分布求風(fēng)能評估參數(shù),以及威布爾分布參數(shù)的估計;建立了風(fēng)電場風(fēng)機(jī)的Jensen尾流模型,采用該尾流模型計及風(fēng)電場上下游風(fēng)機(jī)之間相互遮擋的影響,確定了計算風(fēng)電場任意風(fēng)機(jī)位置的風(fēng)速的方法。然后本文對分散式風(fēng)電場微觀選址方法進(jìn)行了研究。針對離散空間的微觀選址提出了自適應(yīng)和聲搜索算法,建立了微觀選址的目標(biāo)函數(shù),提出了自適應(yīng)的參數(shù)調(diào)整策略。通過仿真對比,驗證了該方法的可行性;在分析離散化空間風(fēng)電場微觀選址局限性的基礎(chǔ)上,針對連續(xù)空間的微觀選址提出了動態(tài)和聲粒子群算法。通過分析優(yōu)化結(jié)果,驗證了算法的可行性及較前述算法的優(yōu)越性。之后結(jié)合上述分散式風(fēng)電場微觀選址方法進(jìn)行了分散式風(fēng)電場微觀選址軟件的開發(fā)。分散式風(fēng)電場微觀選址軟件是在Visual Studio 2010編程環(huán)境中結(jié)合ArcGIS Engine來實現(xiàn)的,軟件實現(xiàn)了風(fēng)電場微觀選址的各項功能,包括分散式風(fēng)電場風(fēng)圖譜的繪制、風(fēng)機(jī)優(yōu)化定位等。通過與WAsP軟件選址結(jié)果進(jìn)行比較,驗證了本軟件的可行性和優(yōu)越性。最后,總結(jié)了本文的工作內(nèi)容,就理論研究和軟件完善的方向進(jìn)行了展望。
[Abstract]:In recent years, the economy of our country has been developing at a high speed. At the same time, the problem of environmental pollution caused by the irrational use of energy is becoming more and more serious. Based on this, our country proposes to develop the green economy and take the road of sustainable development. Wind power generation is an important support for the sustainable development of energy, and decentralized power generation is a major feature of wind energy utilization in recent years. First of all, we should consider the location of wind farm. Site selection plays an important role in the utilization and economy of wind energy. In order to maximize the output power of the whole wind farm and have better economic benefit, the micro-location work is to arrange the wind turbine in the selected small area. This paper starts from the factors of economy, technology and environment, etc. This paper studies the micro-location technology of decentralized wind power generation, and develops a software system suitable for micro-location of decentralized wind farm. Firstly, the basic knowledge of wind resources is introduced in this paper. This paper analyzes in detail how to use Weibull distribution of wind speed to obtain wind energy evaluation parameters and Weibull distribution parameter estimation, establishes Jensen wake model of wind turbine fan, The wake model is used to take into account the influence of mutual occlusion between upstream and downstream fans of wind farm. The method of calculating wind speed of arbitrary fan position in wind farm is determined. Then, the micro-location method of decentralized wind farm is studied in this paper. An adaptive harmonic search algorithm is proposed for the micro-location of discrete space. The objective function of micro site selection is established, and an adaptive parameter adjustment strategy is proposed. The feasibility of this method is verified by simulation and comparison, and the limitation of discrete space wind farm location is analyzed. A dynamic harmonic particle swarm optimization algorithm is proposed for the microscopic location of continuous space. The feasibility of the algorithm and the superiority of the above algorithm are verified. Then, the decentralized wind farm micro-location software is developed in combination with the above decentralized wind farm micro-location method. The decentralized wind farm micro-location software is developed. In the Visual Studio 2010 programming environment combined with ArcGIS Engine, The software realizes the functions of wind farm micro-location, including wind map drawing of distributed wind farm, wind turbine optimization location, etc. The feasibility and superiority of this software are verified by comparing with the result of WAsP software. The work of this paper is summarized, and the direction of theoretical research and software improvement is prospected.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM614
【相似文獻(xiàn)】
相關(guān)碩士學(xué)位論文 前1條
1 李福賀;分散式風(fēng)電場微觀選址技術(shù)研究及其系統(tǒng)開發(fā)[D];東北大學(xué);2014年
,本文編號:1660186
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1660186.html
最近更新
教材專著