基于邊沿效應(yīng)的高精度相位差測量技術(shù)
本文選題:相位差 切入點(diǎn):相位同步檢測 出處:《西安電子科技大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著現(xiàn)代高新技術(shù)的發(fā)展,精密時(shí)間相位同步技術(shù)在衛(wèi)星導(dǎo)航定位、網(wǎng)絡(luò)通訊同步、軍事以及國防等領(lǐng)域發(fā)揮著重大作用,而高精度的相位測量技術(shù)作為實(shí)現(xiàn)精確時(shí)間相位同步的前提不但成為國內(nèi)外研究的熱點(diǎn),并且對(duì)其它高新科技領(lǐng)域的快速發(fā)展有著巨大的推動(dòng)力。目前國內(nèi)相位測量技術(shù)和歐美國家還存在一定的差距,為了在這些技術(shù)領(lǐng)域縮小與發(fā)達(dá)國家之間的差距實(shí)現(xiàn)技術(shù)突破,對(duì)于全新的測量理論以及高精度測量方法的研究十分必要。本文開始講述了幾種早期常用的幾種相位差測量途徑并分析其方法原理。接下來通過數(shù)學(xué)推導(dǎo)以及波形比對(duì)的方法對(duì)時(shí)頻信號(hào)之間的相位變化規(guī)律做了細(xì)致的分析、研究,在任意頻率關(guān)系信號(hào)之間的相位關(guān)系方面探索了群周期、群相位差、最小相移分辨率等特性,群相位理論的運(yùn)用使得任意頻率標(biāo)稱值信號(hào)間的相互比對(duì)成為現(xiàn)實(shí),并且對(duì)時(shí)頻信號(hào)的測量精度有很大提升。在群相位理論基礎(chǔ)上,根據(jù)在頻率信號(hào)測量實(shí)驗(yàn)中出現(xiàn)的測量系統(tǒng)分辨率遠(yuǎn)高于測量器件本身分辨率的現(xiàn)象探索了測量中的邊沿效應(yīng)現(xiàn)象。由于測量器件有限的分辨率,使用傳統(tǒng)的相位測量方法很難完成高精度的測量,通過對(duì)邊沿效應(yīng)理論的研究,研究出了一種頻率信號(hào)之間的高分辨率相位互比方法,通過這種方法,在器件本身測量分辨率不變的情況下實(shí)現(xiàn)測量系統(tǒng)精度的大幅度提高。最后將邊沿效應(yīng)概念運(yùn)用到相位差的測量方法中,提出了引入中介源的相位差測量方案,通過頻率可調(diào)的中介源信號(hào)分別與兩路同頻被測信號(hào)進(jìn)行互比,實(shí)現(xiàn)了信號(hào)間的嚴(yán)格同步,基本上消除了計(jì)數(shù)過程中存在的量化誤差;克服了現(xiàn)有技術(shù)中體積較大、成本較高、時(shí)頻域轉(zhuǎn)換復(fù)雜等缺點(diǎn),簡化了測量電路、降低了制造成本,有效地提升了設(shè)備測量精度。本文通過單片機(jī)與FPGA聯(lián)合開發(fā)相位差測量系統(tǒng),文中詳細(xì)介紹了系統(tǒng)中各模塊的功能以及設(shè)計(jì)原理,之后給出了測量系統(tǒng)的硬件電路設(shè)計(jì)以及電磁兼容設(shè)計(jì)原理,通過對(duì)測量數(shù)據(jù)的分析發(fā)現(xiàn)誤差來源以及測量系統(tǒng)存在的不足之處。
[Abstract]:With the development of modern high and new technology, precise time phase synchronization technology plays an important role in satellite navigation and positioning, network communication synchronization, military and national defense, etc. The high precision phase measurement technology is not only the hot spot of domestic and foreign research, but also the premise of realizing accurate time phase synchronization. And it has a huge impetus for the rapid development of other high-tech fields. At present, there is still a certain gap between the domestic phase measurement technology and the European and American countries. In order to narrow the gap between these technical fields and the developed countries, we can achieve a technological breakthrough. It is necessary to study new measurement theory and high precision measurement method. This paper begins to describe several early commonly used methods of phase difference measurement and analyze their principles. Then, through mathematical derivation and wave analysis. The method of shape comparison makes a detailed analysis on the law of phase change between time-frequency signals. In the aspect of phase relation between signals of arbitrary frequency relation, the characteristics of group period, group phase difference, minimum phase shift resolution and so on are explored. The application of group phase theory makes the comparison between signals of arbitrary frequency nominal value become a reality. And the measurement accuracy of time-frequency signal is greatly improved. Based on the phenomenon that the resolution of the measurement system is far higher than the resolution of the measuring device itself in the frequency signal measurement experiment, the effect of the edge effect in the measurement is explored. Because of the limited resolution of the measuring device, It is very difficult to accomplish high precision measurement by using traditional phase measurement method. By studying the theory of edge effect, a method of high resolution phase ratio between frequency signals is developed. The precision of the measurement system is greatly improved under the condition that the measuring resolution of the device itself is not changed. Finally, the concept of edge effect is applied to the measurement method of phase difference, and a phase difference measurement scheme with intermediate source is proposed. By comparing the frequency adjustable intermediate source signal with the two same frequency measured signals, the strict synchronization between the signals is realized, the quantization error in the counting process is basically eliminated, and the large volume and high cost of the existing technology are overcome. Because of the complexity of time-frequency domain conversion, the measurement circuit is simplified, the manufacturing cost is reduced, and the measuring precision of the equipment is improved effectively. The phase difference measurement system is developed by using single chip microcomputer and FPGA. In this paper, the function and design principle of each module in the system are introduced in detail, and then the hardware circuit design and electromagnetic compatibility design principle of the measurement system are given. Through the analysis of the measurement data, the source of the error and the shortcomings of the measurement system are found.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM933.312
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄧新蒲,盧啟中,孫仲康;數(shù)字式相位差測量方法及精度分析[J];國防科技大學(xué)學(xué)報(bào);2002年05期
2 郭明良,秦淑香,蘇勛文;數(shù)字式工頻電壓相位差測量儀的設(shè)計(jì)[J];煤礦機(jī)械;2003年06期
3 劉嘉新,張黎,王鐵濱;智能數(shù)字式工頻相位差計(jì)[J];森林工程;2003年04期
4 李澤光;基于正交雙通道算法的相位差測量[J];電測與儀表;2004年02期
5 張鵬,徐進(jìn),曹建榮;一種基于數(shù)字分析的相位差測量方法[J];計(jì)算機(jī)測量與控制;2004年03期
6 李國朝,禹定臣,張繼金;相位差的測量及虛擬相位差計(jì)的設(shè)計(jì)[J];天中學(xué)刊;2004年05期
7 田桂平,萬鈞力,陳滟濤;基于矢量內(nèi)積法的高精度數(shù)字相位差計(jì)[J];電測與儀表;2004年10期
8 吳俊清;相位差的數(shù)字化測量研究[J];應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào);2005年01期
9 李國朝;基于相關(guān)原理的虛擬相位差計(jì)的設(shè)計(jì)[J];物理實(shí)驗(yàn);2005年07期
10 劉遠(yuǎn)社,張振亞;同頻率正弦信號(hào)動(dòng)態(tài)相位差的測量[J];儀器儀表學(xué)報(bào);2005年S1期
相關(guān)會(huì)議論文 前3條
1 翟瑞永;蕭寶瑾;;一種高頻信號(hào)相位差測量的方法[A];2007北京地區(qū)高校研究生學(xué)術(shù)交流會(huì)通信與信息技術(shù)會(huì)議論文集(上冊(cè))[C];2008年
2 張忠紅;江海清;高梅國;;基于數(shù)字信道化接收機(jī)的相位差測量方法研究[A];第六屆全國信號(hào)和智能信息處理與應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2012年
3 廖家平;張友獎(jiǎng);姚銘;;一種高精度相位差測量系統(tǒng)的設(shè)計(jì)[A];湖北省電工技術(shù)學(xué)會(huì)、武漢電工技術(shù)學(xué)會(huì)2008年學(xué)術(shù)年會(huì)暨理事會(huì)換屆大會(huì)論文集[C];2008年
相關(guān)博士學(xué)位論文 前3條
1 李智奇;時(shí)頻信號(hào)的相位比對(duì)與處理技術(shù)[D];西安電子科技大學(xué);2012年
2 周俊儒;基于RFID的室內(nèi)定位技術(shù)研究[D];浙江大學(xué);2014年
3 邢浩江;電網(wǎng)同步采集相位精度影響因素的權(quán)重分布與補(bǔ)償研究[D];哈爾濱工業(yè)大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 王蓮蓮;高精度數(shù)字式相位差測量系統(tǒng)的研究[D];蘇州大學(xué);2006年
2 饒曉紅;高精度相位差測量系統(tǒng)的研究[D];電子科技大學(xué);2010年
3 王超;高精度相位差檢測系統(tǒng)設(shè)計(jì)[D];西安電子科技大學(xué);2012年
4 賈立鋒;高精度時(shí)頻信號(hào)的相位差及群相位差處理與測量技術(shù)研究[D];西安電子科技大學(xué);2012年
5 康旭;基于邊沿效應(yīng)的高精度相位差測量技術(shù)[D];西安電子科技大學(xué);2014年
6 于光運(yùn);高分辨率的距離變化——相位差精密測量技術(shù)[D];西安電子科技大學(xué);2010年
7 楊明玲;相位差可調(diào)的正弦波信號(hào)發(fā)生器設(shè)計(jì)[D];哈爾濱理工大學(xué);2014年
8 汪洋;用于絕對(duì)距離干涉測量的FPGA比相技術(shù)研究[D];西安理工大學(xué);2009年
9 史芳芳;基于DSP的相位差測量系統(tǒng)的研究[D];哈爾濱理工大學(xué);2011年
10 趙國偉;高精度機(jī)載單站無源定位技術(shù)研究[D];西北工業(yè)大學(xué);2007年
,本文編號(hào):1641734
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1641734.html