電動汽車用永磁同步電動機的設計研究
發(fā)布時間:2018-03-15 22:02
本文選題:永磁同步電動機 切入點:齒槽轉矩 出處:《華南理工大學》2014年碩士論文 論文類型:學位論文
【摘要】:隨著全球能源和環(huán)境問題日益嚴峻,,發(fā)展新能源汽車勢在必行。永磁同步電動機具有體積小、高效率、高功率密度、低損耗等優(yōu)點,在電動汽車驅動電機產品中受到廣泛的青睞。作為電動汽車驅動系統(tǒng)的核心部件,其性能的好壞直接決定了整車的性能。因此,精心設計性能優(yōu)異的永磁同步電動機具有重要的現實意義和應用價值。本文較為系統(tǒng)地研究了永磁同步電動機的本體設計,包括設計方法、性能計算、有限元仿真、參數化分析、優(yōu)化性能等。 首先,闡述了本文選題的背景意義,綜述了電動汽車用永磁同步電動機國內外發(fā)展狀況,同時介紹了永磁同步電動機的工作原理、常用永磁同步電動機的結構及其特點、PMSM穩(wěn)態(tài)運行性能。 接著,根據電動汽車的整車參數,確定了其驅動電機性能指標,然后參照永磁同步電動機設計的原則,初步設計了一臺30kW永磁同步電動機,詳細分析了設計的過程和關鍵技術。借助于RMxprt對電機進行了參數性能計算,并在Ansys Maxwell進行有限元仿真,深入研究了電機空載、負載時的各項性能,結果令人滿意,達到了設計指標。對電機進行了參數化分析,得到了一些結論。對比了表貼式和內置式PMSM的一些性能。 然后,基于能量法的齒槽轉矩解析公式,探究了轉子表面開槽、磁極圓周方向分段、磁極分組偏移三種削弱齒槽轉矩的方法。每一種方法給出了相應優(yōu)化參數的表達式。其中,以10極12槽PMSM驗證了轉子表面開槽的優(yōu)化效果。將磁極圓周分段、磁極分組偏移方法應用到本文設計的表貼式PMSM,并對其進行了優(yōu)化設計。結果表明,磁極圓周分段、磁極分組偏移兩種方法都能有效抑制齒槽轉矩、減小轉矩波動,并且并不會影響原電機主要的性能。此外,磁極圓周分段還能減少永磁體的用量,節(jié)約了成本。 最后,以本文設計并優(yōu)化后的電機為模型,通過對定子鐵心齒部、軛部不同位置的有限元磁場仿真,得到了相應位置的磁密分量、磁密軌跡,并分析了各位置的磁化特點。在鐵耗分離模型的基礎上,將定子劃分為不同區(qū)域,計算了各區(qū)域的鐵耗密度,分析定子鐵耗的分布。最后計算了整個電機定子的鐵耗,并與有限元結果進行對比。
[Abstract]:With the global energy and environment problems becoming increasingly serious, it is imperative to develop new energy vehicles. PMSM has the advantages of small size, high efficiency, high power density, low loss and so on. As the core component of electric vehicle drive system, the performance of the electric vehicle directly determines the performance of the whole vehicle. The meticulous design of PMSM with excellent performance has important practical significance and application value. In this paper, the Noumenon design of PMSM is studied systematically, including design method, performance calculation, finite element simulation, etc. Parametric analysis, performance optimization, etc. First of all, the background significance of this paper is expounded, the development of PMSM used in electric vehicle is summarized, and the working principle of PMSM is also introduced. The structure and characteristics of permanent magnet synchronous motor (PMSM) are discussed. Then, according to the whole vehicle parameters of electric vehicle, the performance index of its driving motor is determined, and then a 30kW permanent magnet synchronous motor is preliminarily designed according to the design principle of permanent magnet synchronous motor (PMSM). The design process and key technology are analyzed in detail. The parameter performance of the motor is calculated by means of RMxprt, and the finite element simulation is carried out in Ansys Maxwell. The performance of the motor without load and load is deeply studied. The results are satisfactory. The parameters of the motor are analyzed, and some conclusions are obtained. The performances of the table-mounted PMSM and the built-in PMSM are compared. Then, based on the analytic formula of tooth slot torque based on the energy method, the slotting on the rotor surface and the circumferential direction of the magnetic pole are discussed. There are three ways to weaken the torque of the tooth slot by the shift of the magnetic pole block. Each method gives the expression of the corresponding optimization parameter. Where, the optimization effect of the slot on the rotor surface is verified by the PMSM with 10 poles and 12 slots, and the circle of the magnetic pole is segmented. The magnetic pole packet migration method is applied to the surface paste PMSM designed in this paper, and its optimization design is carried out. The results show that both the pole circumference and the magnetic pole packet migration can effectively suppress the tooth slot torque and reduce the torque ripple. In addition, the pole-circumferential segment can reduce the consumption of permanent magnet and save the cost. Finally, taking the motor designed and optimized in this paper as the model, the magnetic field of the stator core tooth and yoke is simulated by finite element method, and the magnetic density component and the magnetic density track are obtained. On the basis of the separation model of iron consumption, the stator is divided into different regions, the iron loss density of each region is calculated, and the distribution of stator iron loss is analyzed. Finally, the iron loss of the whole motor stator is calculated. The results are compared with the finite element results.
【學位授予單位】:華南理工大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM341
【參考文獻】
相關期刊論文 前8條
1 劉婷;歐陽紅林;黃守道;;基于重復單元削弱永磁風力發(fā)電機齒槽轉矩[J];電工技術學報;2011年12期
2 唐任遠;;稀土永磁電機發(fā)展綜述[J];電氣技術;2005年04期
3 鄭金鳳;胡冰樂;張翔;;純電動汽車驅動電機應用概述[J];機電技術;2009年S1期
4 馮超;;2009——中國汽車工業(yè)發(fā)展的里程碑和新征程[J];汽車工程;2009年12期
5 劉金峰;張學義;扈建龍;;電動汽車驅動電機發(fā)展展望[J];農業(yè)裝備與車輛工程;2012年10期
6 李鯤鵬,胡虔生,黃允凱;計及繞組電感的永磁無刷直流電動機電路模型及其分析[J];中國電機工程學報;2004年01期
7 張長文;;世界各國汽車排放法規(guī)概況[J];重型汽車;2005年06期
8 陳貴葆;;Nd-Fe-B稀土永磁同步電動機的優(yōu)化設計研究[J];中小型電機;1993年02期
相關博士學位論文 前1條
1 曹先慶;混合動力電動汽車用永磁同步電動機驅動系統(tǒng)的研究[D];沈陽工業(yè)大學;2008年
本文編號:1616999
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1616999.html