永磁同步電機(jī)無(wú)位置傳感器快速啟動(dòng)方法研究
本文選題:永磁同步電機(jī) 切入點(diǎn):矢量控制 出處:《湖南大學(xué)》2015年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:永磁同步電機(jī)采用永磁體產(chǎn)生氣隙磁通而不需要額外勵(lì)磁,具有功率密度高、體積小、重量輕等獨(dú)特優(yōu)點(diǎn),被廣泛運(yùn)用于許多工業(yè)應(yīng)用中。當(dāng)前永磁同步電機(jī)傳動(dòng)系統(tǒng)采用的控制方法主要是矢量控制和直接轉(zhuǎn)矩控制,這兩種方法都可以實(shí)現(xiàn)對(duì)電機(jī)轉(zhuǎn)速和轉(zhuǎn)矩的精確控制,從而獲得優(yōu)良的調(diào)速性能,但是都不可避免需要得到精確的轉(zhuǎn)子位置信息。轉(zhuǎn)子位置可由機(jī)械式傳感器測(cè)得,但機(jī)械式傳感器的安裝增加了系統(tǒng)的成本和復(fù)雜程度,降低了系統(tǒng)的穩(wěn)定性和抗干擾能力。因此永磁同步電機(jī)的無(wú)位置傳感器控制成為了當(dāng)前電機(jī)控制領(lǐng)域的熱點(diǎn)課題,而在無(wú)位置傳感器條件下的啟動(dòng)則是這一研究課題的難點(diǎn)。本文主要針對(duì)永磁同步電機(jī)無(wú)位置傳感器快速啟動(dòng)方法展開(kāi)相關(guān)研究。首先,簡(jiǎn)要介紹永磁同步電機(jī)的無(wú)位置傳感器控制策略和常用的無(wú)位置傳感器啟動(dòng)方法,建立永磁同步電機(jī)的數(shù)學(xué)模型,分析永磁同步電機(jī)矢量控制及基于滑模觀測(cè)器的無(wú)位置傳感器控制。其次,主要研究永磁同步電機(jī)在無(wú)位置傳感器條件下的啟動(dòng)方法,按照三段式的方法實(shí)現(xiàn)電機(jī)啟動(dòng),分別研究轉(zhuǎn)子初始位置定位、開(kāi)環(huán)加速、狀態(tài)切換三個(gè)階段。在轉(zhuǎn)子初始位置定位階段本文提出一種改進(jìn)的電壓矢量注入法,相比較于傳統(tǒng)的電壓矢量注入法,本文在第二批電壓矢量后給電機(jī)施加一對(duì)方向相反的電壓矢量,幅值和作用時(shí)間比前兩批矢量都有所增加,導(dǎo)致響應(yīng)電流對(duì)d軸N/S極增去磁作用更加明顯,可以避免轉(zhuǎn)子磁極判斷錯(cuò)誤;另外,在對(duì)第二批電壓矢量的響應(yīng)電流進(jìn)行處理時(shí),利用其反方向電感的差異對(duì)電流判斷結(jié)果進(jìn)行驗(yàn)證,確保電流判斷結(jié)果的準(zhǔn)確性。在開(kāi)環(huán)加速階段采用I-F速度開(kāi)環(huán)、電流閉環(huán)控制方式,保證電機(jī)良好的動(dòng)態(tài)性能。在狀態(tài)切換階段采用基于電流幅值變化的策略,本文提出一種電流按變化斜率遞減的控制方法,狀態(tài)切換過(guò)渡過(guò)程后期電流變化斜率慢于過(guò)渡過(guò)程前期,在保證狀態(tài)切換點(diǎn)時(shí)刻電流無(wú)明顯波動(dòng)的前提下大大縮短過(guò)渡過(guò)程時(shí)間,實(shí)現(xiàn)電機(jī)從開(kāi)環(huán)控制方式向雙閉環(huán)控制方式的平滑切換。最后,在MATLAB環(huán)境下對(duì)開(kāi)環(huán)加速和狀態(tài)切換過(guò)程進(jìn)行建模,同時(shí)構(gòu)建以TI公司的TMS320F2808為主控芯片的實(shí)驗(yàn)平臺(tái)對(duì)改進(jìn)的電壓矢量注入法以及在開(kāi)環(huán)加速、狀態(tài)切換的控制策略進(jìn)行實(shí)驗(yàn)驗(yàn)證。仿真和實(shí)驗(yàn)結(jié)果證明了本文所提控制策略的有效性和可行性,可以實(shí)現(xiàn)永磁同步電機(jī)在無(wú)位置傳感器條件下快速平滑啟動(dòng),具有較高的工程實(shí)用價(jià)值。
[Abstract]:Permanent magnet synchronous motor uses permanent magnet to produce air gap flux without additional excitation. It has the advantages of high power density, small size, light weight and so on. It is widely used in many industrial applications. At present, the main control methods are vector control and direct torque control, both of which can achieve accurate control of motor speed and torque. In order to obtain excellent speed regulation performance, it is inevitable to obtain accurate rotor position information. The rotor position can be measured by mechanical sensor, but the installation of mechanical sensor increases the cost and complexity of the system. Therefore, the sensorless control of permanent magnet synchronous motor (PMSM) has become a hot topic in the field of motor control. The starting of PMSM without position sensor is the difficulty of this research topic. This paper mainly focuses on the PMSM position sensorless quick start method. First of all, This paper briefly introduces the sensorless control strategy of permanent magnet synchronous motor (PMSM) and the commonly used sensorless starting method, and establishes the mathematical model of PMSM. The vector control of PMSM and the sensorless control based on sliding mode observer are analyzed. Secondly, the starting method of PMSM under sensorless condition is studied, and the starting method of PMSM is realized according to the three-stage method. In this paper, an improved voltage vector injection method is proposed in the rotor initial position positioning phase, which is compared with the traditional voltage vector injection method. In this paper, a pair of opposite direction voltage vectors are applied to the motor after the second batch of voltage vectors, the amplitude and the action time are increased than those of the previous two batches, which results in a more obvious demagnetizing effect of the response current on the d axis N / S pole. In addition, when the response current of the second batch voltage vector is processed, the result of current judgment is verified by using the difference of the inductor in the opposite direction. In the open-loop acceleration stage, I-F speed open-loop and current-closed-loop control are adopted to ensure the motor's good dynamic performance. In the state switching phase, the strategy based on the change of current amplitude is adopted. In this paper, a control method of decreasing current with varying slope is proposed. The slope of current change in the late stage of state switching is slower than that in the early stage of transition. On the premise of no obvious fluctuation of current at the state switching point, the transition time is greatly shortened, and the smooth switching of motor from open-loop control mode to double-closed-loop control mode is realized. Finally, The open loop acceleration and state switching process are modeled in MATLAB environment. At the same time, the improved voltage vector injection method and the open loop acceleration are constructed using TI's TMS320F2808 as the main control chip. The simulation and experimental results show that the proposed control strategy is effective and feasible, and the PMSM can start smoothly and quickly under sensorless conditions. It has high engineering practical value.
【學(xué)位授予單位】:湖南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TM341
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王軍;李盛兵;安芳;王曉嘉;;基于電壓脈沖矢量法的面裝式永磁同步電動(dòng)機(jī)初始位置辨識(shí)[J];微特電機(jī);2014年07期
2 周揚(yáng)忠;程明;許海軍;;永磁同步發(fā)電機(jī)轉(zhuǎn)子磁極初始位置辨識(shí)研究[J];電力電子技術(shù);2014年02期
3 黃慶;黃守道;陳澤遠(yuǎn);周滔滔;馬敏;鄒永;匡江傳;;不對(duì)稱(chēng)電壓下PWM整流器的變結(jié)構(gòu)自抗擾控制[J];電機(jī)與控制學(xué)報(bào);2014年01期
4 陳寧;陳文祥;喻壽益;;表貼式永磁同步電機(jī)無(wú)位置傳感器控制[J];控制工程;2012年02期
5 王子輝;陸凱元;葉云岳;;基于改進(jìn)的脈沖電壓注入永磁同步電機(jī)轉(zhuǎn)子初始位置檢測(cè)方法[J];中國(guó)電機(jī)工程學(xué)報(bào);2011年36期
6 繆禮鋒;梁青;王永;汪慶;;基于脈振電壓法的永磁同步電動(dòng)機(jī)的初始位置檢測(cè)[J];微特電機(jī);2011年05期
7 唐麗嬋;齊亮;;永磁同步電機(jī)的應(yīng)用現(xiàn)狀與發(fā)展趨勢(shì)[J];裝備機(jī)械;2011年01期
8 陳丹亞;賈要勤;楊仲慶;;電動(dòng)車(chē)驅(qū)動(dòng)用IPM永磁同步電動(dòng)機(jī)控制方法綜述[J];微特電機(jī);2010年02期
9 谷善茂;何鳳有;譚國(guó)俊;張輝;;擴(kuò)展卡爾曼濾波的PMSM無(wú)傳感器低速性能研究[J];電氣傳動(dòng);2009年12期
10 李永東;朱昊;;永磁同步電機(jī)無(wú)速度傳感器控制綜述[J];電氣傳動(dòng);2009年09期
相關(guān)博士學(xué)位論文 前4條
1 劉穎;永磁同步電機(jī)脈振高頻信號(hào)注入無(wú)位置傳感器技術(shù)研究[D];南京航空航天大學(xué);2012年
2 王子輝;永磁同步電機(jī)全速度范圍無(wú)位置傳感器控制策略研究[D];浙江大學(xué);2012年
3 王慶龍;交流電機(jī)矢量控制系統(tǒng)滑模變結(jié)構(gòu)控制策略研究[D];合肥工業(yè)大學(xué);2007年
4 吳茂剛;矢量控制永磁同步電動(dòng)機(jī)交流伺服系統(tǒng)的研究[D];浙江大學(xué);2006年
相關(guān)碩士學(xué)位論文 前4條
1 劉軍;基于滑模觀測(cè)器的PMSM無(wú)位置傳感器矢量控制的研究[D];浙江大學(xué);2014年
2 王明金;永磁同步電機(jī)無(wú)位置傳感器技術(shù)的研究[D];南京航空航天大學(xué);2009年
3 胡任之;永磁同步電機(jī)轉(zhuǎn)子初始位置估計(jì)[D];哈爾濱工業(yè)大學(xué);2008年
4 宋正強(qiáng);表面式永磁同步電機(jī)無(wú)傳感器控制策略及初始位置檢測(cè)[D];沈陽(yáng)工業(yè)大學(xué);2004年
,本文編號(hào):1577891
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1577891.html