低轉(zhuǎn)速直驅(qū)式永磁同步風(fēng)力發(fā)電機(jī)直接轉(zhuǎn)矩控制性能優(yōu)化
本文關(guān)鍵詞: 風(fēng)力發(fā)電 直接轉(zhuǎn)矩控制 擴(kuò)展卡爾曼濾波 轉(zhuǎn)速控制 SVPWM 出處:《電子科技大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:在能源危機(jī)日益嚴(yán)重的今天,新能源開(kāi)發(fā)和利用已迫在眉睫。風(fēng)能作為一種綠色能源取之不盡用之不竭,是未來(lái)最有前景的新能源之一。風(fēng)能的有效利用依靠風(fēng)機(jī)的精確設(shè)計(jì)以及控制系統(tǒng)的開(kāi)發(fā)。早期的風(fēng)電系統(tǒng)主要為恒速恒頻系統(tǒng),其風(fēng)機(jī)設(shè)計(jì)簡(jiǎn)單,控制系統(tǒng)相對(duì)簡(jiǎn)化,隨著技術(shù)的進(jìn)步特別是電力電子技術(shù)的飛速發(fā)展,風(fēng)電系統(tǒng)逐漸演變?yōu)樽兯俸泐l系統(tǒng),風(fēng)機(jī)轉(zhuǎn)速可以跟蹤風(fēng)速變化,使風(fēng)能的利用達(dá)到最優(yōu)。變速恒風(fēng)電頻系統(tǒng)的配置方式又有很多種,不同的發(fā)電機(jī)配備相應(yīng)的電力電子變流裝置可以組成種類繁多特點(diǎn)各異的風(fēng)力發(fā)電系統(tǒng)。在風(fēng)速較低的情況下,風(fēng)電機(jī)組控制主要體現(xiàn)在轉(zhuǎn)速控制上。本文針對(duì)風(fēng)力發(fā)電機(jī)轉(zhuǎn)速控制問(wèn)題展開(kāi)分析:首先介紹了本文的研究背景以及當(dāng)前風(fēng)力發(fā)電產(chǎn)業(yè)的發(fā)展?fàn)顩r,分析了幾種常用的風(fēng)力發(fā)電系統(tǒng)及其各自特點(diǎn),對(duì)風(fēng)力發(fā)電系統(tǒng)的控制系統(tǒng)進(jìn)行了簡(jiǎn)要的介紹并重點(diǎn)分析了低于額定風(fēng)速情況的風(fēng)力發(fā)電機(jī)轉(zhuǎn)速控制策略。其次介紹了風(fēng)力發(fā)電系統(tǒng)的結(jié)構(gòu)以及組成,對(duì)組成風(fēng)力發(fā)電系統(tǒng)的重要部分做了詳細(xì)的闡述并建立了其數(shù)學(xué)模型,其中推導(dǎo)了永磁同步發(fā)電機(jī)的數(shù)學(xué)模型,并在靜止坐標(biāo)系下對(duì)其模型進(jìn)行了推導(dǎo),之后通過(guò)坐標(biāo)系變換對(duì)其數(shù)學(xué)模型進(jìn)行化簡(jiǎn),達(dá)到易于控制的目的。同時(shí)對(duì)低于額定風(fēng)速下的風(fēng)機(jī)最大功率跟蹤控制策略也進(jìn)行了進(jìn)一步的說(shuō)明。然后介紹了基本直接轉(zhuǎn)矩控制的基本原理及其在永磁同步發(fā)電機(jī)上的具體應(yīng)用,對(duì)其實(shí)現(xiàn)過(guò)程做了分析,通過(guò)仿真發(fā)現(xiàn)基本直接轉(zhuǎn)矩控制存在轉(zhuǎn)矩脈動(dòng)較大、控制不精確等問(wèn)題。為解決這些問(wèn)題采用空間電壓矢量調(diào)制(SVPWM)的方法對(duì)直接轉(zhuǎn)矩控制進(jìn)行優(yōu)化,結(jié)果表明轉(zhuǎn)矩脈動(dòng)問(wèn)題得到了明顯改善,同時(shí)保持了較好的動(dòng)態(tài)性能,最后針對(duì)系統(tǒng)運(yùn)行過(guò)程中參數(shù)變化的問(wèn)題設(shè)計(jì)了基于擴(kuò)展卡爾曼濾波器的定子磁鏈觀測(cè)器,使得系統(tǒng)具備更好的抗干擾能力和魯棒性。最后結(jié)果顯示優(yōu)化系統(tǒng)能夠跟蹤快速變化的風(fēng)速并保持良好的控制性能。
[Abstract]:With the increasingly serious energy crisis, the development and utilization of new energy is imminent. Wind energy, as a kind of green energy, is inexhaustible. Wind energy is one of the most promising new energy sources in the future. The effective use of wind energy depends on the precise design of wind turbines and the development of control systems. The early wind power systems were mainly constant speed and constant frequency systems, with simple fan design and relatively simple control systems. With the progress of technology, especially the rapid development of power electronics technology, wind power system gradually evolved into variable speed constant frequency system, fan speed can track the change of wind speed. The use of wind energy is optimized. There are many ways to configure the frequency system of variable speed constant wind power. Different generators equipped with corresponding power electronic converters can form a wide variety of wind power generation systems with different characteristics. Wind turbine control is mainly reflected in speed control. This paper analyzes the speed control of wind turbine. Firstly, the research background of this paper and the current development of wind power generation industry are introduced. Several commonly used wind power systems and their respective characteristics are analyzed. The control system of wind power system is introduced briefly, and the speed control strategy of wind turbine under rated wind speed is analyzed emphatically. Secondly, the structure and composition of wind power system are introduced. The important part of wind power generation system is described in detail and its mathematical model is established, in which the mathematical model of permanent magnet synchronous generator is derived, and its model is deduced in static coordinate system. Then the mathematical model is simplified by the transformation of coordinate system. At the same time, the maximum power tracking control strategy of fan under rated wind speed is further explained. Then the basic principle of direct torque control and its application in permanent magnet synchronous generation are introduced. The concrete application of motor, The realization process of DTC is analyzed, and it is found by simulation that there are some problems such as large torque ripple and inaccurate control. In order to solve these problems, space voltage vector modulation (SVPWM) method is used to optimize DTC. The results show that the torque ripple problem is obviously improved while maintaining better dynamic performance. Finally, a stator flux observer based on extended Kalman filter is designed to solve the problem of parameter change during the system operation. Finally, the results show that the optimized system can track the rapidly changing wind speed and maintain good control performance.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM315
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 馬洪飛,徐殿國(guó),苗立杰;幾種變速恒頻風(fēng)力發(fā)電系統(tǒng)控制方案的對(duì)比分析[J];電工技術(shù)雜志;2000年10期
2 皇甫宜耿;劉衛(wèi)國(guó);馬瑞卿;;非線性永磁同步電機(jī)建模方法與仿真[J];電氣傳動(dòng)自動(dòng)化;2008年06期
3 李學(xué)文;李學(xué)軍;;基于SIMULINK的永磁同步電機(jī)建模與仿真[J];河北大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年S1期
4 謝運(yùn)祥,盧柱強(qiáng);基于MATLAB/Simulink的永磁同步電機(jī)直接轉(zhuǎn)矩控制仿真建模[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年01期
5 郎寶華;劉衛(wèi)國(guó);王永強(qiáng);;基于卡爾曼濾波器的永磁同步電機(jī)定子磁鏈觀測(cè)研究[J];微電機(jī);2007年06期
6 孫丹,賀益康;基于恒定開(kāi)關(guān)頻率空間矢量調(diào)制的永磁同步電機(jī)直接轉(zhuǎn)矩控制[J];中國(guó)電機(jī)工程學(xué)報(bào);2005年12期
7 劉英培;萬(wàn)健如;梁鵬飛;;基于擴(kuò)展卡爾曼濾波器和空間電壓矢量調(diào)制的永磁同步電機(jī)直接轉(zhuǎn)矩控制[J];中國(guó)電機(jī)工程學(xué)報(bào);2009年27期
相關(guān)碩士學(xué)位論文 前1條
1 田海峰;恒速恒頻風(fēng)力發(fā)電系統(tǒng)并網(wǎng)運(yùn)行研究[D];華北電力大學(xué)(河北);2008年
,本文編號(hào):1550960
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1550960.html