低轉(zhuǎn)速直驅(qū)式永磁同步風力發(fā)電機直接轉(zhuǎn)矩控制性能優(yōu)化
發(fā)布時間:2018-03-01 07:29
本文關鍵詞: 風力發(fā)電 直接轉(zhuǎn)矩控制 擴展卡爾曼濾波 轉(zhuǎn)速控制 SVPWM 出處:《電子科技大學》2014年碩士論文 論文類型:學位論文
【摘要】:在能源危機日益嚴重的今天,新能源開發(fā)和利用已迫在眉睫。風能作為一種綠色能源取之不盡用之不竭,是未來最有前景的新能源之一。風能的有效利用依靠風機的精確設計以及控制系統(tǒng)的開發(fā)。早期的風電系統(tǒng)主要為恒速恒頻系統(tǒng),其風機設計簡單,控制系統(tǒng)相對簡化,隨著技術的進步特別是電力電子技術的飛速發(fā)展,風電系統(tǒng)逐漸演變?yōu)樽兯俸泐l系統(tǒng),風機轉(zhuǎn)速可以跟蹤風速變化,使風能的利用達到最優(yōu)。變速恒風電頻系統(tǒng)的配置方式又有很多種,不同的發(fā)電機配備相應的電力電子變流裝置可以組成種類繁多特點各異的風力發(fā)電系統(tǒng)。在風速較低的情況下,風電機組控制主要體現(xiàn)在轉(zhuǎn)速控制上。本文針對風力發(fā)電機轉(zhuǎn)速控制問題展開分析:首先介紹了本文的研究背景以及當前風力發(fā)電產(chǎn)業(yè)的發(fā)展狀況,分析了幾種常用的風力發(fā)電系統(tǒng)及其各自特點,對風力發(fā)電系統(tǒng)的控制系統(tǒng)進行了簡要的介紹并重點分析了低于額定風速情況的風力發(fā)電機轉(zhuǎn)速控制策略。其次介紹了風力發(fā)電系統(tǒng)的結(jié)構(gòu)以及組成,對組成風力發(fā)電系統(tǒng)的重要部分做了詳細的闡述并建立了其數(shù)學模型,其中推導了永磁同步發(fā)電機的數(shù)學模型,并在靜止坐標系下對其模型進行了推導,之后通過坐標系變換對其數(shù)學模型進行化簡,達到易于控制的目的。同時對低于額定風速下的風機最大功率跟蹤控制策略也進行了進一步的說明。然后介紹了基本直接轉(zhuǎn)矩控制的基本原理及其在永磁同步發(fā)電機上的具體應用,對其實現(xiàn)過程做了分析,通過仿真發(fā)現(xiàn)基本直接轉(zhuǎn)矩控制存在轉(zhuǎn)矩脈動較大、控制不精確等問題。為解決這些問題采用空間電壓矢量調(diào)制(SVPWM)的方法對直接轉(zhuǎn)矩控制進行優(yōu)化,結(jié)果表明轉(zhuǎn)矩脈動問題得到了明顯改善,同時保持了較好的動態(tài)性能,最后針對系統(tǒng)運行過程中參數(shù)變化的問題設計了基于擴展卡爾曼濾波器的定子磁鏈觀測器,使得系統(tǒng)具備更好的抗干擾能力和魯棒性。最后結(jié)果顯示優(yōu)化系統(tǒng)能夠跟蹤快速變化的風速并保持良好的控制性能。
[Abstract]:With the increasingly serious energy crisis, the development and utilization of new energy is imminent. Wind energy, as a kind of green energy, is inexhaustible. Wind energy is one of the most promising new energy sources in the future. The effective use of wind energy depends on the precise design of wind turbines and the development of control systems. The early wind power systems were mainly constant speed and constant frequency systems, with simple fan design and relatively simple control systems. With the progress of technology, especially the rapid development of power electronics technology, wind power system gradually evolved into variable speed constant frequency system, fan speed can track the change of wind speed. The use of wind energy is optimized. There are many ways to configure the frequency system of variable speed constant wind power. Different generators equipped with corresponding power electronic converters can form a wide variety of wind power generation systems with different characteristics. Wind turbine control is mainly reflected in speed control. This paper analyzes the speed control of wind turbine. Firstly, the research background of this paper and the current development of wind power generation industry are introduced. Several commonly used wind power systems and their respective characteristics are analyzed. The control system of wind power system is introduced briefly, and the speed control strategy of wind turbine under rated wind speed is analyzed emphatically. Secondly, the structure and composition of wind power system are introduced. The important part of wind power generation system is described in detail and its mathematical model is established, in which the mathematical model of permanent magnet synchronous generator is derived, and its model is deduced in static coordinate system. Then the mathematical model is simplified by the transformation of coordinate system. At the same time, the maximum power tracking control strategy of fan under rated wind speed is further explained. Then the basic principle of direct torque control and its application in permanent magnet synchronous generation are introduced. The concrete application of motor, The realization process of DTC is analyzed, and it is found by simulation that there are some problems such as large torque ripple and inaccurate control. In order to solve these problems, space voltage vector modulation (SVPWM) method is used to optimize DTC. The results show that the torque ripple problem is obviously improved while maintaining better dynamic performance. Finally, a stator flux observer based on extended Kalman filter is designed to solve the problem of parameter change during the system operation. Finally, the results show that the optimized system can track the rapidly changing wind speed and maintain good control performance.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM315
【參考文獻】
相關期刊論文 前7條
1 馬洪飛,徐殿國,苗立杰;幾種變速恒頻風力發(fā)電系統(tǒng)控制方案的對比分析[J];電工技術雜志;2000年10期
2 皇甫宜耿;劉衛(wèi)國;馬瑞卿;;非線性永磁同步電機建模方法與仿真[J];電氣傳動自動化;2008年06期
3 李學文;李學軍;;基于SIMULINK的永磁同步電機建模與仿真[J];河北大學學報(自然科學版);2007年S1期
4 謝運祥,盧柱強;基于MATLAB/Simulink的永磁同步電機直接轉(zhuǎn)矩控制仿真建模[J];華南理工大學學報(自然科學版);2004年01期
5 郎寶華;劉衛(wèi)國;王永強;;基于卡爾曼濾波器的永磁同步電機定子磁鏈觀測研究[J];微電機;2007年06期
6 孫丹,賀益康;基于恒定開關頻率空間矢量調(diào)制的永磁同步電機直接轉(zhuǎn)矩控制[J];中國電機工程學報;2005年12期
7 劉英培;萬健如;梁鵬飛;;基于擴展卡爾曼濾波器和空間電壓矢量調(diào)制的永磁同步電機直接轉(zhuǎn)矩控制[J];中國電機工程學報;2009年27期
相關碩士學位論文 前1條
1 田海峰;恒速恒頻風力發(fā)電系統(tǒng)并網(wǎng)運行研究[D];華北電力大學(河北);2008年
,本文編號:1550960
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1550960.html