介觀太陽能電池對電極的制備及電池性能優(yōu)化
發(fā)布時(shí)間:2018-02-27 20:02
本文關(guān)鍵詞: 介觀太陽能電池 染料敏化太陽能電池 對電極聚3 4乙烯二氧噻吩 硫化鎳 碳材料 碘鉛甲胺 鈣鈦礦 出處:《華中科技大學(xué)》2014年博士論文 論文類型:學(xué)位論文
【摘要】:介觀太陽能電池(mesoscopic solar cell,MSC)是一種新型太陽能電池。它擁有一種獨(dú)特的介孔結(jié)構(gòu),這種介孔結(jié)構(gòu)使得這類電池相比其他類型太陽能電池而言,具有更大的表面積,從而有利于捕獲更多的光子,產(chǎn)生較大的光電流。 染料敏化納米晶太陽能電池(Dye-sensitized solar cells,DSSC)是一類典型的介觀太陽能電池。通常,它們采用納米晶介孔二氧化鈦(Ti02)半導(dǎo)體材料作為電子收集電極。這種基于納米材料的介孔電極比表面積可高達(dá)285m2/g,是非介孔電極的780倍。迄今為止,基于此類介孔電極的介觀太陽能電池器件最高光電轉(zhuǎn)換效率已經(jīng)超過15%。如此高的光電轉(zhuǎn)換效率使得這類太陽能電池幾乎可以與傳統(tǒng)的硅基太陽能電池相媲美。不僅如此,介觀太陽能電池相比于硅基太陽能電池而言,具有制備工藝更加簡單、原料價(jià)格更加低廉、材料來源更加廣泛等特點(diǎn)。這些特點(diǎn)都是新一代低成本清潔能源的必備要素,因此,介觀太陽能電池在發(fā)展前景上具有比硅基太陽能電池更大的應(yīng)用潛力。 一般來說,DSSC按其電解質(zhì)狀態(tài)可分為兩種:一種為液態(tài)DSSC;另一種為固態(tài)DSSC。其中,液態(tài)DSSC通常采用鉑作為對電極,而固態(tài)DSSC通常采用金作為對電極。盡管DSSC的制備成本已經(jīng)比硅基太陽能電池要低,但這種貴金屬電極不管是從材料價(jià)格上來講還是從制備工藝上來考慮,都在一定程度上阻礙了DSSC成本的進(jìn)一步降低。而如果能找到一種更廉價(jià)的材料來替代其中的金屬對電極,將會(huì)使DSSC成為一種真正意義上的低成本太陽能電池。 本論文針對DSSC中貴金屬電極所存在的材料成本高、制備工藝復(fù)雜等弊端,開發(fā)了一系列基于有機(jī)聚合物材料(聚3,4乙烯二氧噻吩,PEDOT)、無機(jī)化合物材料(硫化鎳,NiS)以及碳材料(C)的對電極,并將這些電極應(yīng)用在基于不同電解質(zhì)的DSSC中。此外,通過對對電極的優(yōu)化和對DSSC制備工藝的改良,獲得了較為理想的器件效率。這類基于非貴金屬電極材料電極的開發(fā)與應(yīng)用,為今后低成本DSSC的發(fā)展提供了一種可行的思路。本論文的主要內(nèi)容包括: (1)利用電聚合方法制備出了高催化性能的PEDOT電極。通過對聚合電量的調(diào)控,制備出了不同厚度的PEDOT對電極,并將其應(yīng)用在基于碘體系電解質(zhì)的DSSC中。電化學(xué)阻抗分析(EIS)及循環(huán)伏安(CV)測試結(jié)果表明,PEDOT電極聚合電量越多,其催化活性越好。經(jīng)過對電池各部分的優(yōu)化,采用200mC/cm2聚合電量條件下制備出的PEDOT200mc電極作為對電極,基于碘體系電解質(zhì)的DSSC器件的光電轉(zhuǎn)化效率可達(dá)7.60%,與同等條件下以Pt作為對電極的電池器件效率(7.87%)相當(dāng)。 (2)以介孔無機(jī)氧化物Ti02做為支架結(jié)構(gòu),通過在氧化物孔道結(jié)構(gòu)中聚合PEDOT制備出了一種新型PEDOT/TiO2復(fù)合電極,并將其應(yīng)用在基于無機(jī)硫體系電解質(zhì)的硫化鎘(CdS)量子點(diǎn)敏化DSSC中。EIS結(jié)果表明,這種PEDOT/TiO2復(fù)合電極在無機(jī)硫電解質(zhì)中具有比單純PEDOT電極更高的催化活性。此外,采用電化學(xué)方法替代傳統(tǒng)的連續(xù)離子層吸附反應(yīng)法優(yōu)化了CdS量子點(diǎn)的生長,并最終獲得了光電轉(zhuǎn)化效率達(dá)1.87%的CdS敏化DSSC。 (3)針對PEDOT電極可通過控制聚合電量的多少來調(diào)控電極的厚度,利用Bis-EDOT二聚體,降低PEDOT電極制備的聚合電壓,制備出了均勻透明的PEDOT對電極,其透光度可高達(dá)90%以上。將此透明對電極應(yīng)用于有機(jī)硫電解質(zhì)(AT/BAT)中,組裝出了一種新型雙面DSSC。該雙面DSSC的背面照射時(shí)光電轉(zhuǎn)化效率為4.35%,達(dá)正面照射時(shí)光電轉(zhuǎn)化效率的70%以上。 (4)采用一種新型脈沖電壓沉積法制備出具有高催化活性的透明NiS對電極。掃描電子顯微鏡及電子能譜測試分析表明,通過不同脈沖周期的調(diào)控,不僅可以調(diào)控NiS對電極中NiS的顆粒大小,還可以控制其中Ni原子與S原子的比例。進(jìn)一步的EIS、CV測試表明,S元素的增加能夠提高NiS對電極在有機(jī)硫電解質(zhì)(ET/BET)的催化活性。最終,組裝出了基于此種透明NiS對電極的雙面DSSC。該雙面DSSC的背面照射時(shí)光電轉(zhuǎn)化效率高達(dá)4.98%,達(dá)正面照射時(shí)光電轉(zhuǎn)化效率的78%。 (5)在基于鈣鈦礦類吸光材料(碘鉛甲胺,CH3NH3PbI3)的介觀太陽能電池中,首次引入碳材料電極。采用一種碳單基板結(jié)構(gòu),成功制備出了CH3NH3Pbl3/TiO2異質(zhì)結(jié)介觀太陽能電池。通過對單基板膜厚的調(diào)控及對碳電極的優(yōu)化,我們制備出了光電轉(zhuǎn)化效率達(dá)6.64%的碳單基板電池器件。在此基礎(chǔ)之上,采用片狀Ti02納米晶材料替代顆粒狀Ti02納米晶材料,進(jìn)一步提升了器件效率。EIS分析表明,Ti02納米片與CH3NH3PbI3之間的電子復(fù)合明顯比Ti02納米顆粒要小。最終,基于Ti02納米片的電池器件光電轉(zhuǎn)化效率達(dá)9.65%。
[Abstract]:Mesoscopic solar cell (mesoscopic solar cell, MSC) is a new type of solar cell. It has a unique mesoporous structure, the mesoporous structure makes this kind of battery compared to other types of solar cells, has a large surface area, so as to capture more light photons, produces a large current.
Dye-sensitized solar cells (Dye-sensitized solar cells, DSSC) is a kind of typical mesoscopic solar cells. Usually, they use nanocrystalline mesoporous titania (Ti02) semiconductor material as electron collecting electrode. The mesoporous electrodes based on nano material surface area can be as high as 285m2/g, which is 780 times of non mesoporous electrode so far, the mesoporous electrodes based on mesoscopic solar cell devices, the highest photoelectric conversion efficiency is more than 15%. so high photoelectric conversion efficiency makes this kind of solar cell can almost and silicon based traditional solar battery comparable. Not only that, compared to the mesoscopic solar cell silicon solar battery, is prepared the process is simpler, cheaper raw materials, source material more widely. These characteristics are the essential elements of a new generation of low cost clean energy, therefore, Mesoscopic solar cells have greater potential for application than silicon based solar cells in the future.
In general, DSSC according to the electrolyte state can be divided into two types: one is liquid DSSC; the other is the solid DSSC., liquid DSSC usually adopts platinum as the counter electrode, and the DSSC is usually used as the solid gold electrode. Although the DSSC preparation cost than silicon solar cells should be low, but this no matter from the noble metal electrode materials in terms of price or preparation from the system to consider, to some extent hindered the further reduction of the cost of DSSC. But if you can find a cheaper materials to replace the metal electrode, will make DSSC into a low cost solar cell in the true sense.
This paper based on the existing DSSC noble metal electrode materials of high cost, complicated preparation process defects, developed a series based on organic polymer (poly ethylene 3,4 two oxygen thiophene, PEDOT) material, inorganic compounds (nickel sulfide, NiS) and carbon materials (C) on the electrode, and the electrode application based on the different electrolyte DSSC. In addition, through the optimization of the electrode and the improvement of the preparation process of DSSC, get the ideal efficiency of the device. The development and application of non noble metal electrode material electrode based on, provides a feasible way for the future development of the low DSSC. The contents of this paper include:
(1) using electro polymerization prepared PEDOT electrode with high catalytic performance. Through regulating the polymerization charge, were prepared with different thickness of PEDOT electrode, and its application in the DSSC system based on iodine electrolyte. The electrochemical impedance analysis (EIS) and cyclic voltammetry (CV) test results the PEDOT electrode, the polymerization charge more, its catalytic activity is better. After optimization of each part of the battery, the PEDOT200mc electrode prepared by 200mC/cm2 polymerization charge conditions as the counter electrode, the photoelectric conversion efficiency of DSSC device system of the iodine electrolyte was 7.60% based on the battery efficiency of the device on the electrode as Pt and under the same conditions (7.87%).
(2) the mesoporous inorganic oxide Ti02 as a scaffold structure, through the polymerization of PEDOT in oxide pore structure prepared a new type of PEDOT/TiO2 composite electrode and its application in inorganic sulfur cadmium sulfide (CdS) electrolyte system based on quantum dot sensitized DSSC.EIS results show that the PEDOT/TiO2 composite electrode has a higher catalytic activity than PEDOT electrode in inorganic sulfur electrolyte. In addition, the successive ionic layer by electrochemical method to replace the traditional adsorption reaction was optimized by the growth of CdS QDs, and finally got the photoelectric conversion efficiency of 1.87% CdS sensitized DSSC.
(3) according to how much PEDOT electrodes can power by controlling the polymerization regulation of the electrode thickness, using two Bis-EDOT dimer, reducing the polymerization voltage of PEDOT electrode preparation, preparation of a uniform and transparent PEDOT on the electrode, the transmittance can reach more than 90%. The transparent electrodes for organic sulfur electrolyte (AT/BAT), assembled a conversion efficiency of 4.35% a new type of double sided DSSC DSSC. the time of back irradiation power, irradiation time of positive electric conversion efficiency of 70%.
(4) using a new type of pulse voltage deposition of transparent NiS with high catalytic activity of the electrode. Scanning electron microscopy and electron spectroscopy analysis shows that by controlling different pulse cycle, not only can control the NiS on the electrode in NiS particle size, but also can control the ratio of the Ni and S atoms EIS. Further, CV test shows that the increase of S element can improve the electrode of NiS in organic electrolyte sulfur (ET/BET) catalytic activity. In the end, the back of the transparent NiS assembled on the electrode of the double sided DSSC. DSSC based illumination when the photoelectric conversion efficiency is as high as 4.98%, up front irradiation time electricity conversion the efficiency of 78%.
(5) based on the perovskite type light absorbing material (iodine lead methylamine, CH3NH3PbI3) mesoscopic solar cell, first introduced carbon material electrode. Using a single carbon substrate structure, successfully prepared the CH3NH3Pbl3/TiO2 heterojunction solar cell. Through the regulation of the mesoscopic single substrate thickness and optimization of carbon electrode. We prepared carbon substrate of single battery device photoelectric conversion efficiency of 6.64%. On this basis, the shape of Ti02 nanocrystalline material instead of granular Ti02 nanocrystalline materials, to further enhance the efficiency of the device.EIS analysis showed that between Ti02 film and CH3NH3PbI3 composite nano electronic than Ti02 nanoparticles is smaller. In the end, the battery device the photoelectric conversion efficiency of Ti02 Nanopieces was based on 9.65%.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM914.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 張娓娓;劉貴山;胡志強(qiáng);鄭傳柯;顏世博;;碳材料在太陽能電池對電極中的研究進(jìn)展[J];材料導(dǎo)報(bào);2009年S1期
2 耿新華,孫云,王宗畔,李長健;薄膜太陽電池的研究進(jìn)展[J];物理;1999年02期
3 姚偉;太陽能利用與可持續(xù)發(fā)展[J];中國能源;2005年02期
,本文編號(hào):1544114
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1544114.html
最近更新
教材專著