計(jì)及風(fēng)電預(yù)測不確定性的電力系統(tǒng)日內(nèi)調(diào)度模型研究
本文關(guān)鍵詞: 風(fēng)電 不確定性 模糊理論 多場景 優(yōu)化調(diào)度 出處:《華北電力大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著化石燃料的日益枯竭和環(huán)境污染問題的日益突出,以風(fēng)電為主的新能源發(fā)電得到大力發(fā)展。然而風(fēng)電預(yù)測功率具有不確定性,大規(guī)模風(fēng)電并網(wǎng)給電力系統(tǒng)日內(nèi)調(diào)度及AGC調(diào)控帶來巨大壓力。如何在現(xiàn)有預(yù)測精度下實(shí)現(xiàn)功率預(yù)測結(jié)果的高效應(yīng)用,將不確定性信息納入到系統(tǒng)優(yōu)化調(diào)度過程中,已成為風(fēng)電并網(wǎng)優(yōu)化調(diào)度的研究熱點(diǎn)。本文在分析風(fēng)電功率預(yù)測誤差的基礎(chǔ)上,建立計(jì)及風(fēng)電預(yù)測不確定性的電力系統(tǒng)經(jīng)濟(jì)調(diào)度模型。 首先基于模糊理論建立含風(fēng)電電力系統(tǒng)動態(tài)模糊調(diào)度模型,為更好描述風(fēng)電出力特性,選用高斯函數(shù)作為風(fēng)電出力的隸屬函數(shù)建模。采用最大化滿意度指標(biāo)法將雙目標(biāo)優(yōu)化問題轉(zhuǎn)化為等價(jià)清晰優(yōu)化問題求解。結(jié)合算例采用MATLAB編程驗(yàn)證了模型的有效性,并對比了三角形、梯形、高斯型隸屬函數(shù)對計(jì)算結(jié)果的影響,分析了采用高斯型隸屬函數(shù)描述風(fēng)電預(yù)測功率不確定性的優(yōu)勢;計(jì)算結(jié)果也表明雙目標(biāo)優(yōu)化比單目標(biāo)更合理。 同時(shí),本文還構(gòu)建了基于多場景的概率優(yōu)化調(diào)度模型。該模型把風(fēng)電功率可能的波動范圍離散成多場景,在此基礎(chǔ)上,通過離散風(fēng)功率預(yù)測誤差分布曲線得到場景概率,并在時(shí)間尺度上考慮相鄰時(shí)間段預(yù)測誤差的關(guān)聯(lián)性。通過在目標(biāo)函數(shù)中引入概率調(diào)整成本,使優(yōu)化結(jié)果計(jì)及了因風(fēng)電波動性產(chǎn)生的成本。對含風(fēng)電場的IEEE-30節(jié)點(diǎn)系統(tǒng)進(jìn)行測試分析,論證了所提模型的合理性和有效性,并對具體參數(shù)進(jìn)行了分析。 最后,對上述兩種建模思路從建模難易程度、求解難易程度、決策難易程度、實(shí)用性展望四個方面進(jìn)行了對比分析。以期對含風(fēng)電的電力系統(tǒng)經(jīng)濟(jì)調(diào)度提供參考。
[Abstract]:With the increasingly depletion of fossil fuels and the increasingly prominent environmental pollution problems, wind power mainly new energy generation has been vigorously developed. However, the forecast power of wind power is uncertain. Large-scale wind power grid connection brings great pressure to in-day dispatching and AGC regulation of power system. How to realize the efficient application of power prediction results under the existing prediction accuracy. The introduction of uncertainty information into the optimal scheduling process has become a hot topic in wind power grid optimization scheduling. This paper analyzes the prediction error of wind power. The economic dispatching model of power system considering the uncertainty of wind power forecasting is established. Firstly, based on the fuzzy theory, the dynamic fuzzy dispatching model of wind power system is established to describe the wind power output characteristics better. Gao Si function is selected as the membership function of wind power generation. The maximum satisfaction index method is used to transform the two-objective optimization problem into an equivalent and clear optimization problem. The MATLAB programming is used to verify the proposed method. The validity of the model. The influence of triangular, trapezoidal and Gao Si membership functions on the calculation results is compared. The results also show that the double objective optimization is more reasonable than the single objective. At the same time, the probabilistic optimal scheduling model based on multi-scene is constructed, which discretizes the possible fluctuation range of wind power into multi-scene, and on this basis. The scene probability is obtained by the discrete wind power prediction error distribution curve, and the correlation of prediction errors in adjacent time periods is considered on the time scale. The probability adjustment cost is introduced into the objective function. The optimization results take into account the cost caused by wind power fluctuation. The IEEE-30 node system with wind farm is tested and analyzed, and the rationality and validity of the proposed model are demonstrated. The specific parameters are analyzed. Finally, the above two methods of modeling from the degree of difficulty in modeling, easy to solve, difficult to make decisions. Four aspects of practical prospect are compared and analyzed in order to provide a reference for the economic dispatch of power system with wind power.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM73
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 江岳文;陳沖;溫步瀛;;基于隨機(jī)模擬粒子群算法的含風(fēng)電場電力系統(tǒng)經(jīng)濟(jì)調(diào)度[J];電工電能新技術(shù);2007年03期
2 楊洪明,段獻(xiàn)忠;基于模糊理論的雙邊交易裁減模型[J];電力系統(tǒng)自動化;2002年20期
3 李曉磊;周京陽;于爾鏗;潘毅;;基于動態(tài)搜索線性混合整數(shù)法的機(jī)組組合新算法[J];電力系統(tǒng)自動化;2008年21期
4 全然;簡金寶;鄭海艷;;基于外逼近方法的中期機(jī)組組合問題[J];電力系統(tǒng)自動化;2009年11期
5 李智;韓學(xué)山;楊明;雷宇;康凱;;計(jì)及接納風(fēng)電能力的電網(wǎng)調(diào)度模型[J];電力系統(tǒng)自動化;2010年19期
6 張伯明;吳文傳;鄭太一;孫宏斌;;消納大規(guī)模風(fēng)電的多時(shí)間尺度協(xié)調(diào)的有功調(diào)度系統(tǒng)設(shè)計(jì)[J];電力系統(tǒng)自動化;2011年01期
7 張昭遂;孫元章;李國杰;程林;林今;;計(jì)及風(fēng)電功率不確定性的經(jīng)濟(jì)調(diào)度問題求解方法[J];電力系統(tǒng)自動化;2011年22期
8 王洪濤;何成明;房光華;傅磊;;計(jì)及風(fēng)電預(yù)測誤差帶的調(diào)度計(jì)劃漸進(jìn)優(yōu)化模型[J];電力系統(tǒng)自動化;2011年22期
9 沈偉;吳文傳;張伯明;鄭太一;孫宏斌;;消納大規(guī)模風(fēng)電的在線滾動調(diào)度策略與模型[J];電力系統(tǒng)自動化;2011年22期
10 吳棟梁;王揚(yáng);郭創(chuàng)新;劉毅;高振興;;電力市場環(huán)境下考慮風(fēng)電預(yù)測誤差的經(jīng)濟(jì)調(diào)度模型[J];電力系統(tǒng)自動化;2012年06期
相關(guān)博士學(xué)位論文 前1條
1 雷興;風(fēng)電接入帶來的不確定性研究[D];山東大學(xué);2012年
,本文編號:1485531
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1485531.html