天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電力論文 >

層狀二硫化鉬納米復(fù)合材料在超級電容器中的應(yīng)用

發(fā)布時間:2018-01-22 07:09

  本文關(guān)鍵詞: 二硫化鉬 聚苯胺 石墨烯 碳納米管 碳?xì)饽z 超級電容器 納米復(fù)合材料 出處:《信陽師范學(xué)院》2014年碩士論文 論文類型:學(xué)位論文


【摘要】:能源危機已經(jīng)成為全球性的問題并引起了廣泛的關(guān)注,探索具有優(yōu)越性能的新材料來解決能源問題已經(jīng)成為科學(xué)家們最重要的使命之一。超級電容器作為一種新型儲能裝置有很多優(yōu)異性能:能量密度高、功率密度大、循環(huán)壽命長、充放電時間短、綠色環(huán)保等,已成為國內(nèi)外清潔能源的研究熱點,特別是在最近幾年在全球范圍已經(jīng)引起了學(xué)術(shù)界和商業(yè)界的廣泛關(guān)注。發(fā)展超級電容器最有效的方式就是研發(fā)出具有優(yōu)越性能的電極材料。層狀二硫化鉬納米片具有獨特的二維層狀結(jié)構(gòu)、大的比表面積和好的導(dǎo)電性能,近來在能源領(lǐng)域引起了科學(xué)家們的關(guān)注。然而單純的二硫化鋁的導(dǎo)電性能相對于碳基材料如石墨烯等還比較低,難以獲得較大的電容量。為此,我們將二硫化鉬納米片與碳基材料如石墨烯、碳?xì)饽z、碳納米管以及導(dǎo)電聚合物聚苯胺進(jìn)行復(fù)合,制備了兒種高性能的超級電容器電極材料。主要實驗內(nèi)容如下: (1)利用水熱法制備了二硫化鉬/石墨烯復(fù)合物,對MoS2/Gr復(fù)合材料形貌進(jìn)行表征和電化學(xué)性能測試,MoS2沉積在Gr上防止阻止了Gr納米片的堆積并形成寬松的結(jié)構(gòu)有利于質(zhì)子和電子在活性物質(zhì)和電解液之間的快速傳遞,提高其利用率;同時Gr納米片較大的空間能夠負(fù)載MoS2有利于MoS2活性分子釋放,從而提高了復(fù)合材料的電容性。在電流密度為1A/g時,MoS2/Gr (?)匕電容達(dá)到了243F/g并且在循環(huán)充放電1000圈后其比電容只損失了7.7%,表明二硫化鉬/石墨烯復(fù)合材料具有良好的超級電容性能。 (2)利用水熱法制備了二硫化鉬/碳?xì)饽z復(fù)合物,對MoS2/Carbon Aerogel復(fù)合材料形貌進(jìn)行了表征和電化學(xué)性能進(jìn)行了測試,Carbon Aerogel嵌入到MoS2納米片中有效阻止了MoS2納米片的團(tuán)聚從而有效的增大了復(fù)合材料的比表面積,同時Carbon Aerogel負(fù)載在MoS2納米片上形成孔穴來儲存電子從而進(jìn)一步提高電子在有限電極材料中的快速傳遞能力,進(jìn)而使復(fù)合材料的電化學(xué)活性得到有效的提高,在電流密度為1A/g時,MoS2/Carbon Aerogel的比電容達(dá)到260F/g并且在循環(huán)充放電500圈后其比電容只損失了4%,這些表明二硫化鉬/碳?xì)饽z復(fù)合材料具有良好的超級電容性能。 (3)利用水熱法制備了二硫化鉬/多壁碳納米管復(fù)合物,對MoS2/MWCNTs復(fù)合材料形貌進(jìn)行了表征和電化學(xué)性能進(jìn)行測試,可以看到MWCNTs交錯地糾纏在MoS2納米片上組成3D結(jié)構(gòu)的MoS2/MWCNTs復(fù)合物,這種3D結(jié)構(gòu)有利于增加復(fù)合材料的比表面積,同時結(jié)構(gòu)中MoS2納米片的堆疊將會形成相互交錯的網(wǎng)架更加方便電子和質(zhì)子的傳遞,從而提高了MoS2/MWCNTs的電容性能。在電流密度為1A/g時,MoS2/MWCNTs比電容高達(dá)452.7F/g并且在循環(huán)充放電1000圈后其比電容只損失了4.2%,表明二硫化鉬/多壁碳納米管復(fù)合材料具有良好的超級電容性能。 (4)利用水熱法制備了分散性好的二硫化鉬納米片,并對其形貌進(jìn)行了表征。采用簡單的一步原位聚合法制備了二硫化鉬/聚苯胺復(fù)合物。對PANI/MoS2復(fù)合材料形貌表進(jìn)行了表征和電化學(xué)性能測試,PANI嵌入和堆積在到MoS2納米片上,阻止了MoS2納米片的堆積,從而有效增大了復(fù)合材料的比表面積,同時PANI負(fù)載在MoS2納米片上形成孔穴來儲存離子,從而提高了電子和質(zhì)子在電極材料中的快速傳遞能力,使復(fù)合材料的電化學(xué)性能顯著提高。PANI/MoS2復(fù)合材料在電流密度為1A/g時比電容達(dá)到了575F/g,同時由于PANI分子插入到MoS2納米片中可以避免PANI在氧化還原過程中因分子骨架的變形而造成電極材料的損壞,提高了復(fù)合材料的循環(huán)穩(wěn)定性,在恒電流充放電500圈后其比電容只損失了2%,這說明復(fù)合材料具有良好的電容性能。
[Abstract]:The energy crisis has become a global problem and aroused widespread concern, to explore new materials with superior performance to solve the energy problem has become one of the most important scientists. The mission of supercapacitor is a new energy storage device has a lot of excellent performance: high energy density, high power density, long cycle life, charge and discharge short time, green environmental protection, has become a hot research topic at home and abroad of clean energy, especially in recent years in the world has attracted widespread attention in academic circles and business circles. The development of super capacitor is the most effective way is to develop electrode materials with superior properties. Layered MoS2 Nanoplates with layered structure two unique, large specific surface area and good conductive properties, has attracted the attention of scientists in the field of energy. However, the conductive properties of the pure aluminum sulfide two Compared with carbon based materials such as graphene is still relatively low, it is difficult to obtain larger capacitance. Therefore, we will molybdenum disulfide and carbon based materials such as graphene, carbon aerogels, carbon nanotubes and conductive polymer polyaniline composite super capacitor electrode material for high performance were prepared. The main experiment the contents are as follows:
(1) MoS2 / graphene composites were prepared by hydrothermal synthesis method, and electrochemical properties to characterize the morphology of the MoS2/Gr composites, MoS2 deposition in Gr prevented the accumulation of preventing Gr nanosheets and forming loose structure in favor of protons and electrons in the active material and the electric liquid solution fast transfer between, improve the utilization rate at the same time; nano Gr large space to load MoS2 to MoS2 active molecules released, thereby improving the capacitance of composite materials. When the current density is 1A/g (MoS2/Gr?) dagger capacitance reached 243F/g and the cycle after 1000 charge discharge cycles the capacitance loss of only 7.7%, that MoS2 / graphene composite material with super capacitor with good performance.
(2) MoS2 / carbon aerogel composites were prepared by hydrothermal method on MoS2/Carbon Aerogel composites were characterized and the electrochemical properties were tested, Carbon Aerogel embedded into MoS2 nanosheets can effectively prevent MoS2 nanosheets agglomeration effectively increases the specific surface area of the composite, and Carbon the formation of cavities in the Aerogel load of MoS2 nanosheets to store electronic so as to further improve the rapid transfer ability in Electronic Co. electrode materials, and the electrochemical activity of composite materials has been effectively improved, when the current density is 1A/g, Aerogel, MoS2/Carbon and 260F/g in the specificcapacitance cycle after 500 charge discharge cycles the specific capacitance only the loss of 4%, these show that MoS2 / carbon aerogel composite material with super capacitor with good performance.
(3) MoS2 / MWCNTs composites were prepared by hydrothermal method, the morphology of the MoS2/MWCNTs composites were tested and the electrochemical characterization, we can see the MWCNTs staggered entangled MoS2/MWCNTs complexes consist of 3D structure in MoS2 nanosheets, this 3D structure is conducive to increasing the specific surface area of the composite. At the same time the structure will be stacked MoS2 nanosheets form staggered grid more convenient transfer of electrons and protons, thereby improving the performance of MoS2/MWCNTs capacitor. When the current density is 1A/g MoS2/MWCNTs, the specific capacitance is 452.7F/g and in circulation after 1000 charge discharge cycles the capacitance loss of only 4.2%, show that MoS2 / multi wall carbon nanotube composite material with super capacitor with good performance.
(4) of the dispersed MoS2 nanoplates were prepared by hydrothermal synthesis method, and the morphology was characterized. The MoS2 / PANI composites were prepared by one-step in situ polymerization. The simple PANI/MoS2 composite sheet for the morphology and electrochemical characterization test, PANI and embedded to MoS2 accumulation in the nano film stop, accumulation of the MoS2 nanosheets, which effectively increases the specific surface area of the composite, and the formation of cavities in the PANI load of MoS2 nanosheets to store ions, thereby improving the rapid transfer of electrons and protons in the electrode material delivery capability, which significantly improve the electrochemical properties of composite materials of.PANI/MoS2 composite material in current the density of 1A/g specific capacitance reached 575F/g, at the same time as PANI molecules into MoS2 nanosheets can be avoided in the PANI during the redox process due to deformation caused by the molecular skeleton of electrode material The damage of the material increased the cycle stability of the composites. After constant current charge and discharge for 500 cycles, the specific capacitance of the composite material only lost 2%, indicating that the composite material has good capacitance performance.

【學(xué)位授予單位】:信陽師范學(xué)院
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:O614.612;TM53

【參考文獻(xiàn)】

相關(guān)期刊論文 前7條

1 王月梅;周惠娣;陳建敏;陳磊;冶銀平;;水性環(huán)氧粘結(jié)固體潤滑涂層的摩擦學(xué)性能研究[J];中國表面工程;2010年02期

2 吳壯志;王德志;梁汛;;納米二硫化鉬制備技術(shù)的研究進(jìn)展[J];材料導(dǎo)報;2008年S2期

3 高賓;許啟明;趙鵬;姚燕燕;田曉珍;;化學(xué)氣相反應(yīng)合成MoS_2納米管的研究[J];功能材料與器件學(xué)報;2006年02期

4 西村允,王安鈞;固體潤滑概論(6)[J];固體潤滑;1987年04期

5 沃恒洲,胡坤宏,胡獻(xiàn)國;納米二硫化鉬作為機械油添加劑的摩擦學(xué)特性研究[J];摩擦學(xué)學(xué)報;2004年01期

6 張步涵;王云玲;曾杰;;超級電容器儲能技術(shù)及其應(yīng)用[J];水電能源科學(xué);2006年05期

7 白鴿玲;吳壯志;;二硫化鉬納米球的制備及其摩擦性能研究[J];潤滑與密封;2013年04期

相關(guān)博士學(xué)位論文 前1條

1 高博;苯磺酸功能化碳納米管基復(fù)合材料的制備及其超電容特性[D];南京航空航天大學(xué);2010年



本文編號:1454040

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1454040.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶4972a***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com