Fe-B-Cu基非晶和納米晶軟磁材料的成分和工藝優(yōu)化
本文關(guān)鍵詞:Fe-B-Cu基非晶和納米晶軟磁材料的成分和工藝優(yōu)化 出處:《華南理工大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 熔體快淬 擇優(yōu)取向 退火 飽和磁感應(yīng)強(qiáng)度 矯頑力
【摘要】:FeB-基軟磁材料,在電子、電力工業(yè)應(yīng)用中得到廣泛的應(yīng)用。從發(fā)現(xiàn)第一塊納米晶軟磁體,經(jīng)過了幾十年的發(fā)展。通過對不同成分、不同工藝制備的FeB-基軟磁合金的研究,在飽和磁感應(yīng)強(qiáng)度Bs、矯頑力Hc和磁損耗P等關(guān)鍵磁性能的優(yōu)化上取得了極大進(jìn)步。本文首先研究了傳統(tǒng)FeSiBCuP合金的制備及其淬態(tài)合金的磁性能,為進(jìn)一步研究奠定了基礎(chǔ)。進(jìn)而,結(jié)合近期研究熱點(diǎn),研究了具有優(yōu)異磁性能的FeBCu合金。 作者在大量文獻(xiàn)閱讀的基礎(chǔ)上,采用熔體甩帶法和適當(dāng)?shù)耐嘶鹛幚砉に囍苽淞朔蔷Ъ{米晶軟磁材料。運(yùn)用XRD、DSC、SEM、VSM、軟磁直流測量裝置等測試表征手段分析了材料的結(jié)構(gòu)與性能。研究了不同元素的添加和不同的熱處理工藝對材料最終磁性能的影響。主要研究內(nèi)容和結(jié)論如下: (1)傳統(tǒng)FeSiBCuP合金的研究結(jié)果表明,高Fe(大于84at.%)含量下很難得到完全非晶的淬態(tài)材料; Si的添加對材料的磁損耗有較大的惡化作用;Cu的添加對材料具有一定的促進(jìn)晶化的作用;P可能具有增強(qiáng)非晶形成能力的作用;Fe/B含量的微小調(diào)整不會對材料性能造成很大影響。因此,在研究中要選擇合適的Fe含量和合理的成分。在淬態(tài)合金的XRD測試結(jié)果表明,貼輥面與自由面之間的溫度梯度會造成(200)方向取向。 (2)具有(200)取向的Fe83.5B15Cu1.5(1)合金,在390℃熱處理10min后獲得最優(yōu)性能:最大飽和磁感應(yīng)強(qiáng)度Bsmax=1.83T,矯頑力Hc=8.7A/m。自由面預(yù)先晶化的α-Fe不僅提高了晶化程度,而且還抑制了晶粒的長大。非晶狀態(tài)的Fe83.5B15Cu1.5(2)合金隨熱處理溫度升高,矯頑力Hc和Bs增大。在420℃熱處理10min后,Bsmax=1.75T,Hc=9.2A/m。由于熱處理形核質(zhì)點(diǎn)較少,非晶條帶對晶化的促進(jìn)以及晶粒長大的抑制能力較弱,晶粒尺寸長大趨勢較快,磁性能相對較低。預(yù)處理的非晶Fe83.5B15Cu1.5(2)合金B(yǎng)s在1.80T左右,矯頑力較低。延長熱處理時(shí)間,矯頑力Hc明顯增大,說明由于保溫時(shí)間的延長,雖然可能一定程度有利于α-Fe更多的析出,但此時(shí)晶粒的尺寸會迅速的增大,導(dǎo)致矯頑力惡化,甚至出現(xiàn)第二相。 (3)非晶狀態(tài)的Fe83.5B15Cu1.5(2)合金經(jīng)300℃處理后再420℃熱處理10min,Bs=1.78T,Hc=12.5A/m。相比于直接420℃熱處理10min的,晶化度得到一定提高,晶粒尺寸相近,相應(yīng)的磁性能也得到改善。這是由于300℃的預(yù)處理獲得了更多的Cu團(tuán)簇,促進(jìn)了α-Fe的形核以及抑制晶粒的粗大。 (4)Fe83.5B15-xCu1.5Px合金隨P含量的增加,合金矯頑力Hc降低,α-Fe的熱穩(wěn)定性提高,抑制了雜相的形成。隨著熱處理溫度的升高,晶粒長大,,矯頑力整體呈上升趨勢;在沒有第二相的情況下,合金矯頑力Hc相對平穩(wěn)地上升,說明淬態(tài)材料中含有的α-Fe在后期處理中具有抑制晶粒長大的作用,從而控制了矯頑力Hc增大的趨勢。在P含量x=4時(shí),即Fe83.5B11Cu1.5P4合金,470℃熱處理10min獲得最優(yōu)性能:Bs=1.78T,Hc=36A/m。
[Abstract]:FeB- based soft magnetic materials, widely used in electronics, electric power industry application. From that the first piece of nanocrystalline soft magnet, after decades of development. According to the different components of FeB- based soft magnetic alloy prepared by different processes, the saturation magnetic induction Bs, great progress optimization the coercivity of Hc and magnetic loss P key magnetic properties. This paper studies the traditional preparation of FeSiBCuP alloy and quenched alloy magnetic properties, laid the foundation for further study. Then, combined with the recent research focus, FeBCu alloy has excellent magnetic properties were studied.
Based on the extensive literature reading, amorphous and nanocrystalline soft magnetic materials were prepared with the rejection method and appropriate annealing treatment process by melt. The use of XRD, DSC, SEM, VSM, DC measurement of soft magnetic device test characterization of structure and properties of materials were analyzed. The effects of different elements added and different heat treatment process on the magnetic properties of materials. The main research contents and conclusions are as follows:
(1) research on traditional FeSiBCuP alloy. The results showed that high Fe content (more than 84at.%) it is difficult to completely non quenched amorphous material; adding Si magnetic loss of material deterioration effect is bigger; the addition of Cu has a certain effect on the crystallization promoting material; P may have enhanced amorphous forming ability; micro adjustment will not Fe/B content has a great influence on the material properties. Therefore, to choose a suitable Fe content and reasonable composition in the study. The test results of XRD quenched alloy shows that the temperature gradient between the roll surface and the free surface will cause the (200) direction.
(2) with (200) orientation of Fe83.5B15Cu1.5 (1) alloy, achieving optimum performance at 390 DEG 10min after heat treatment: the maximum saturation magnetization Bsmax=1.83T, the coercivity of Hc=8.7A/m. free surface pre alpha -Fe not only improves the crystallization degree of crystallization, but also restrain the growth of grains. The amorphous state (Fe83.5B15Cu1.5 2) alloy with the heat treatment temperature increases, the coercivity of Hc and Bs increased. Bsmax=1.75T at 420 DEG C after 10min heat treatment, heat treatment, Hc=9.2A/m. as nucleation point less amorphous ribbons on the crystallization and the improvement of the grain growth inhibition ability is weak, the grain size trend of rapid, relatively low magnetic properties. Pretreatment of amorphous Fe83.5B15Cu1.5 (2) alloy Bs at around 1.80T, the coercivity is low. Prolonged heat treatment time, the coercivity of Hc obviously increased, indicating that due to the holding time, although it may to a certain extent in favor of alpha -Fe more precipitation, but this The size of the grain increases rapidly, causing the coercive force to deteriorate and even the second phase.
(3) the amorphous state of Fe83.5B15Cu1.5 (2) alloy after 300 treatment after heat treatment at 420 10min, Bs=1.78T, Hc=12.5A/m. compared to 420 DEG C direct heat treatment 10min, crystallinity was improved, the grain size is similar to that of the corresponding magnetic properties are also improved. This is due to the pretreatment of 300 DEG C to obtain the more Cu clusters, promote the alpha -Fe nucleation and restrain the grain coarsening.
(4) Fe83.5B15-xCu1.5Px alloy increases with the content of P, the coercivity decreased Hc, improve the thermal stability of alpha -Fe, inhibited the formation of other phases. With the increase of heat treatment temperature, grain growth, the coercive force of the overall upward trend; in the absence of the second phase case, the coercivity of Hc relative rose steadily, that alpha -Fe containing quenched materials can inhibit the grain growth in the later processing, thereby controlling the coercivity of Hc increases. The content of P in x=4, Fe83.5B11Cu1.5P4 alloy, 10min heat treatment of 470 DEG C for optimal performance: Bs=1.78T, Hc=36A/m.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TM271.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Tadeusz Kulik(波),梁秀兵,Jaro■saw Ferenc(波),徐濱士;納米晶鐵鈷基軟磁材料的研究[J];中國表面工程;2004年05期
2 陸偉,嚴(yán)彪;鐵基納米晶軟磁合金的研究[J];材料科學(xué)與工程學(xué)報(bào);2004年03期
3 鄒聯(lián)隆,易建宏,付應(yīng)生,曾慶靈;化學(xué)包覆法制備高性能磁粉芯[J];材料科學(xué)與工程;1999年01期
4 張志純;龍志林;危洪清;李鄉(xiāng)安;彭建;唐平;;Fe_(75-x)M_xHf_3Y_2B_(20)(M=Co,Nb;x=0,4)塊體非晶合金的制備及其熱、軟磁性能[J];稀有金屬材料與工程;2009年03期
5 朱鳳霞;易健宏;李麗婭;彭元東;;鐵基納米晶軟磁合金的研究現(xiàn)狀[J];磁性材料及器件;2008年02期
6 汪汝武;劉靜;王貞;王克雷;徐勇攀;甘章華;盧志紅;李云寶;王登京;袁潔;王玉華;;Finemet-Co非晶合金的結(jié)晶動力學(xué)研究[J];功能材料;2011年S3期
7 ;Investigation of Nanocrystalline Fe-Cu-Nb-Mo-Si-B Alloy[J];Journal of Materials Science & Technology;1997年05期
8 蒲健,肖建中;大塊納米晶材料的制備、性能及應(yīng)用前景[J];金屬功能材料;2000年01期
9 董哲,陳國鈞,呂鍵,王克棟;Nanoperm型FeMB基納米軟磁材料的研究進(jìn)展[J];金屬功能材料;2004年05期
10 梁工英 ,黃一坤;Effects of Mo substituted Nb on magnetic properties of Finemet alloy[J];Transactions of Nonferrous Metals Society of China;2002年02期
本文編號:1435278
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1435278.html