復合儲能裝置的控制策略和各儲能單元參數(shù)優(yōu)化
本文關鍵詞:復合儲能裝置的控制策略和各儲能單元參數(shù)優(yōu)化 出處:《重慶大學》2014年碩士論文 論文類型:學位論文
更多相關文章: 超級電容 復合儲能裝置 控制策略 優(yōu)化 仿真
【摘要】:超級電容作為一種新型環(huán)保的儲能裝置,具有比功率大、充放電迅速、循環(huán)使用壽命長等優(yōu)點,通過與蓄電池的聯(lián)合使用,既能解決蓄電池輸出能力偏弱的缺點,也能解決超級電容儲存的能量偏少的不足。從而既提高了電動車的動力性的同時,也不損害電動車對單次充電后續(xù)駛里程的訴求。 本文以電動車用復合儲能裝置為研究對象,主要從以下幾個方面完成了相關研究: ①分析當前應用于電動車的各種蓄電池的優(yōu)缺點,對本文最終選用的儲能單元鋰電池、超級電容和DC/DC變換器的工作原理和性能參數(shù)進行深入分析,,研究復合儲能裝置的基本結構,并對各種基本結構進行對比分析,選用綜合性能較好的結構,最終在各儲能單元模型的基礎上建立了復合儲能裝置的仿真模型。 ②制定復合儲能裝置的工作模式,提出復合儲能裝置的總體控制目標,并根據(jù)總體控制目標制定復合儲能裝置的速度控制策略、蓄電池輸出電流約束控制策略和基于速度控制和電流約束的模糊控制策略、超級電容儲能不足時鋰電池對超級電容充電的控制策略和制動能量回收時的控制策略,最終最后根據(jù)前面提出的控制策略制定總體控制流程圖。 ③通過對電動機和控制裝置性能的比較,確定了驅動電機的類型,根據(jù)本文選定的整車參數(shù)和制定的電動車性能參數(shù),完成對驅動電機參數(shù)的確定。針對復合儲能裝置各儲能單元對電動車的動力性能和續(xù)駛里程的影響,分定性和定量兩步制定復合儲能裝置中各個儲能參數(shù)的取值范圍,通過線性規(guī)劃完成各個參數(shù)的優(yōu)化及整定。 ④對選定的復合儲能裝置,按照提出的復合儲能裝置工作模式及相應的控制策略,在Matlab/Simulink仿真平臺上搭建整車仿真模型,最后根據(jù)優(yōu)化整定的參數(shù),完成電動汽車加速性能分析,并在高速道路行駛工況及城市道路行駛工況下的動力性和經(jīng)濟性分析,驗證復合儲能裝置和相關控制策略的有效性。
[Abstract]:As a new type of environmental protection energy storage device, super capacitor has the advantages of high specific power, rapid charge and discharge, long cycle life, etc. It is used in combination with battery. It can not only solve the problem of weak output capacity of battery, but also solve the shortage of storage energy of super capacitor, which not only improves the power performance of electric vehicle. Also does not harm the electric vehicle to the single charge follow-up drive mileage demand. This paper takes the compound energy storage device for electric vehicle as the research object, and completes the related research mainly from the following aspects: 1. The advantages and disadvantages of various batteries used in electric vehicles are analyzed, and the working principle and performance parameters of the final energy storage unit lithium battery, super capacitor and DC/DC converter are analyzed. The basic structure of composite energy storage device is studied, and various basic structures are compared and analyzed, and the structure with better comprehensive performance is selected. Finally, the simulation model of composite energy storage unit is established on the basis of each energy storage unit model. (2) the working mode of composite energy storage unit is established, the overall control target of composite energy storage device is put forward, and the speed control strategy of composite energy storage device is formulated according to the overall control goal. The output current constraint control strategy of battery and fuzzy control strategy based on speed control and current constraint are presented. The control strategy of lithium battery to the super capacitor charging and the control strategy of braking energy recovery when the energy storage of super capacitor is insufficient. Finally, the overall control flow chart is made according to the control strategy proposed above. (3) by comparing the performance of motor and control device, the type of driving motor is determined. According to the parameters of the whole vehicle selected in this paper and the performance parameters of electric vehicle. The effect of each energy storage unit of composite energy storage device on the dynamic performance and driving range of electric vehicle is completed. The range of energy storage parameters in composite energy storage equipment is determined by qualitative and quantitative steps, and the parameters are optimized and set by linear programming. 4 for the selected composite energy storage device, according to the proposed working mode of the composite energy storage device and the corresponding control strategy, the vehicle simulation model is built on the Matlab/Simulink simulation platform. Finally, according to the optimized parameters, the acceleration performance analysis of the electric vehicle is completed, and the power and economy analysis under the high-speed road driving condition and the urban road driving condition. Verify the effectiveness of the composite energy storage device and related control strategies.
【學位授予單位】:重慶大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:U469.72;TM912
【參考文獻】
相關期刊論文 前10條
1 侯明;衣寶廉;;燃料電池技術發(fā)展現(xiàn)狀與展望[J];電化學;2012年01期
2 鐘海云,李薦,戴艷陽,李慶奎;新型能源器件——超級電容器研究發(fā)展最新動態(tài)[J];電源技術;2001年05期
3 熊瑞;何洪文;張曉偉;;基于試驗數(shù)據(jù)的超級電容建模方法[J];車輛與動力技術;2010年04期
4 于遠彬;王慶年;王加雪;趙曉旭;;混合動力汽車車載復合電源參數(shù)匹配及其優(yōu)化[J];吉林大學學報(工學版);2008年04期
5 電動汽車重大專項總體組;“十五”國家高技術研究發(fā)展計劃(863計劃)電動汽車重大專項進展[J];汽車工程;2003年06期
6 陳全世,林成濤;電動汽車用電池性能模型研究綜述[J];汽車技術;2005年03期
7 張炳力,趙韓,張翔,錢立軍;超級電容在混合動力電動汽車中的應用[J];汽車研究與開發(fā);2003年05期
8 張翔,趙韓,張炳力,錢立軍;中國電動汽車的進展[J];汽車研究與開發(fā);2004年01期
9 金朝勇;張炳力;徐小東;徐德勝;談健;;車用超級電容的建模與仿真[J];農業(yè)裝備與車輛工程;2009年08期
10 李俄收;王遠;吳文民;;超高速飛輪儲能技術及應用研究[J];微特電機;2010年06期
本文編號:1428570
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1428570.html