質(zhì)子交換膜燃料電池膜電極及催化劑的研究
發(fā)布時(shí)間:2018-01-13 04:37
本文關(guān)鍵詞:質(zhì)子交換膜燃料電池膜電極及催化劑的研究 出處:《天津大學(xué)》2014年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 質(zhì)子交換膜燃料電池 膜電極 電場(chǎng)定向 電催化劑 鉑納米顆粒 石墨納米片
【摘要】:質(zhì)子交換膜燃料電池(PEMFC)具有清潔、高效、功率密度高、啟動(dòng)快等優(yōu)點(diǎn),在電動(dòng)汽車、便攜式和分布式電源設(shè)備等領(lǐng)域具有廣闊的應(yīng)用前景。但PEMFC膜電極的高成本和低穩(wěn)定性嚴(yán)重地制約了其大規(guī)模商業(yè)化應(yīng)用。本文從膜電極的制備、催化層的結(jié)構(gòu)取向優(yōu)化、高催化活性和高穩(wěn)定性Pt催化劑的制備等方面對(duì)PEMFC進(jìn)行了研究。 提出了一種新的膜電極制備方法:使稀催化劑“墨水”直接在氣體擴(kuò)散層上干燥制備出氣體擴(kuò)散電極,然后再與膜熱壓制得膜電極。該方法制備過程簡(jiǎn)單,不需要特殊的儀器設(shè)備,催化層中的Pt載量能夠較為精確地控制,具有相同制備參數(shù)的膜電極,其放電電流-電壓曲線和功率密度曲線基本重合,實(shí)驗(yàn)具有很好的重復(fù)性。催化層中的Nafion含量為30-40wt%時(shí),電池的最大功率密度可達(dá)900mW/cm2。 利用電場(chǎng)的作用制備了結(jié)構(gòu)取向的Pt/CNTs(Pt/碳納米管)催化層。在Pt/CNTs催化劑“墨水”干燥過程中施加垂直向外電場(chǎng),使CNTs載體沿著電場(chǎng)的方向定向排列,有利于提高催化層中Pt的利用效率、降低膜電極的內(nèi)阻、促進(jìn)反應(yīng)氣體的擴(kuò)散和反應(yīng)生成的液態(tài)水的及時(shí)排出。與無取向結(jié)構(gòu)的Pt/CNTs催化層相比,CNTs載體定向排列的催化層具有高出約30%的電池峰功率密度。 以耐腐蝕、導(dǎo)電性好、比表面積高、廉價(jià)易得的石墨納米片(GNPs)為載體制備了Pt/GNPs催化劑。針對(duì)GNPs表面的化學(xué)惰性,利用芳香環(huán)π-π堆積的原理使1-芘甲酸吸附在GNPs的表面并為Pt提供成核點(diǎn),,可以使沉積在GNPs表面的Pt納米顆粒具有約2-3nm的均一尺寸,且空間分布均勻。通過1-芘甲酸對(duì)GNPs進(jìn)行非共價(jià)修飾,所制備的Pt/GNPs催化劑具有較高的電化學(xué)比表面積和較好的電化學(xué)穩(wěn)定性。 使用一系列含不同苯環(huán)數(shù)和不同官能團(tuán)的修飾物研究了修飾物與GNPs的π-π堆積作用力和其官能團(tuán)對(duì)Pt在GNPs表面沉積的影響,并通過改變催化劑的制備條件研究了修飾物在Pt沉積過程中的作用機(jī)理。結(jié)果顯示:修飾物與GNPs的π-π作用力較強(qiáng)且其官能團(tuán)能夠電離時(shí)才對(duì)Pt的沉積具有明顯的輔助作用,另外,修飾物的不同不影響Pt納米顆粒的晶體結(jié)構(gòu)和催化劑的電化學(xué)穩(wěn)定性。
[Abstract]:Proton exchange membrane fuel cell (PEMFC) has the advantages of cleanness, high efficiency, high power density, fast start and so on, in electric vehicles. Portable and distributed power generation devices and other fields have broad application prospects, but the high cost and low stability of PEMFC membrane electrode seriously restrict its large-scale commercial application. The structure and orientation of the catalyst layer, the preparation of Pt catalyst with high catalytic activity and high stability were studied in this paper. A new preparation method of membrane electrode is proposed: the thin catalyst "ink" is used to prepare the gas diffusion electrode directly on the gas diffusion layer, and then the membrane electrode is prepared by hot pressing with the membrane. The preparation process is simple. The Pt load in the catalyst layer can be controlled accurately without special equipment. The discharge current-voltage curve and the power density curve of the membrane electrode with the same preparation parameters basically coincide. When the Nafion content in the catalyst layer is 30-40 wt%, the maximum power density of the cell can reach 900mW / cm ~ 2. The structure oriented Pt / CNT / carbon nanotube (CNT / CNT / CNT nanotube) catalyst layer was prepared by the electric field. The vertical electric field was applied during the drying process of the Pt/CNTs catalyst "ink". The orientation of CNTs carriers along the direction of electric field can improve the utilization efficiency of Pt in the catalyst layer and reduce the internal resistance of the membrane electrode. Promote the diffusion of the reaction gas and the timely discharge of the liquid water produced by the reaction, compared with the non-oriented structure of the Pt/CNTs catalytic layer. The CNTs carrier oriented catalytic layer has a peak power density of about 30%. The Pt/GNPs catalyst was prepared on the basis of high corrosion resistance, good electrical conductivity, high specific surface area and cheap and easy to obtain graphite nanoparticles. Based on the principle of aromatic ring 蟺-蟺 stacking, 1-pyrene formic acid is adsorbed on the surface of GNPs and provides nucleation point for Pt. The Pt nanoparticles deposited on the surface of GNPs have a uniform size of about 2-3 nm and uniform spatial distribution. GNPs was modified by 1-pyrene formic acid. The prepared Pt/GNPs catalyst has high electrochemical specific surface area and good electrochemical stability. The 蟺-蟺 stacking force of GNPs and the effect of functional groups on Pt deposition on the surface of GNPs were studied by using a series of modifiers containing different benzene rings and different functional groups. The mechanism of the modification in Pt deposition was studied by changing the preparation conditions of the catalyst. The results showed that:. When the 蟺-蟺 interaction force between the modifier and the GNPs is strong and its functional group can ionize, it has obvious auxiliary effect on Pt deposition. In addition, the crystal structure of Pt nanoparticles and the electrochemical stability of the catalyst were not affected by the modification.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TM911.4;O643.36
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 馬建新,衣寶廉,俞紅梅,侯中軍,張華民;PEMFC膜電極組件(MEA)制備方法的評(píng)述[J];化學(xué)進(jìn)展;2004年05期
2 GAL Jean-Yves;;In situ chemical fabrication of polyaniline/multi-walled carbon nanotubes composites as supports of Pt for methanol electrooxidation[J];Science China(Chemistry);2010年09期
3 汪嘉澍;潘國順;郭丹;;質(zhì)子交換膜燃料電池膜電極組催化層結(jié)構(gòu)[J];化學(xué)進(jìn)展;2012年10期
相關(guān)博士學(xué)位論文 前2條
1 高啟君;DMFC用改性磺化聚醚醚酮質(zhì)子交換膜的研究[D];天津大學(xué);2009年
2 王志濤;高溫碳質(zhì)化合物聚合物膜燃料電池及電場(chǎng)輔助制備膜電極的研究[D];天津大學(xué);2009年
本文編號(hào):1417529
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1417529.html
最近更新
教材專著