基于BUCK拓?fù)銬C-DC充電芯片的穩(wěn)定性分析
本文關(guān)鍵詞:基于BUCK拓?fù)銬C-DC充電芯片的穩(wěn)定性分析 出處:《西安電子科技大學(xué)》2014年碩士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: BUCK 平均電流模 PWM 建模 穩(wěn)定性 仿真
【摘要】:現(xiàn)代社會(huì)中隨著便攜式電子設(shè)備的迅猛發(fā)展,DC/DC開(kāi)關(guān)轉(zhuǎn)換器憑借其自身優(yōu)良的特性已經(jīng)在各類(lèi)電子設(shè)備中得到越來(lái)越多的應(yīng)用。目前應(yīng)用于電池充電中的開(kāi)關(guān)電源轉(zhuǎn)換器逐漸成為主流。本文主要對(duì)基于BUCK拓?fù)涞膯苇h(huán)平均電流模充電芯片的工作原理和穩(wěn)定性進(jìn)行研究。首先對(duì)系統(tǒng)的工作原理做了詳細(xì)介紹。第二,對(duì)系統(tǒng)進(jìn)行建模,分別計(jì)算出環(huán)路中各個(gè)模塊的小信號(hào)傳輸函數(shù),然后依據(jù)系統(tǒng)的穩(wěn)定性條件,完成了誤差放大器以及補(bǔ)償網(wǎng)絡(luò)的設(shè)計(jì),并且利用MATLAB軟件對(duì)系統(tǒng)穩(wěn)定性進(jìn)行了仿真驗(yàn)證,仿真結(jié)果顯示系統(tǒng)開(kāi)環(huán)直流增益為76dB,帶寬為87KHz,相位裕度是56度,因此整個(gè)環(huán)路滿(mǎn)足閉環(huán)穩(wěn)定工作的條件;同時(shí)系統(tǒng)具有比較高的電源抑制比,直流情況下電源抑制比為75dB,在開(kāi)關(guān)頻率處系統(tǒng)的電源抑制比為49dB,因而系統(tǒng)可以穩(wěn)定工作。第三,對(duì)影響穩(wěn)定性的主要模塊電路進(jìn)行了設(shè)計(jì),最終利用HSPICE軟件對(duì)模塊電路以及整個(gè)系統(tǒng)完成了仿真。該充電芯片采用三段式充電法:涓流、恒流、恒壓充電模式,提高了充電效率,同時(shí)能夠增加電池的壽命。其中在涓流和恒流充電過(guò)程中系統(tǒng)采用單環(huán)平均電流模PWM(Pulse Width Modulation脈沖寬度調(diào)制)控制方式,并且系統(tǒng)處于閉環(huán)工作,因而在充電過(guò)程中會(huì)存在環(huán)路穩(wěn)定性問(wèn)題,所以需要對(duì)整個(gè)系統(tǒng)的環(huán)路進(jìn)行精心設(shè)計(jì),本文主要對(duì)采樣放大模塊,誤差放大器,PWM比較器的設(shè)計(jì)做了詳細(xì)介紹。其中誤差放大器作為調(diào)節(jié)系統(tǒng)穩(wěn)定性的一個(gè)關(guān)鍵模塊,它的性能直接影響著系統(tǒng)穩(wěn)定工作與否,文中采用的誤差放大器為折疊共源共柵結(jié)構(gòu)的跨導(dǎo)型放大器,它具有比較寬的共模輸入范圍,高輸出阻抗、高增益,同時(shí)具有較快的響應(yīng)速度,滿(mǎn)足系統(tǒng)的穩(wěn)定性要求;在恒壓充電過(guò)程中,系統(tǒng)處于開(kāi)環(huán)工作狀態(tài),然而恒壓過(guò)程很短暫,從而保證了充電截止電壓的精度要求。在5V輸入電壓,800KHz的開(kāi)關(guān)頻率,0.1歐姆的采樣電阻,涓流充電管腳接地條件下,對(duì)芯片進(jìn)行整體仿真,電池電壓在2.9V以下時(shí),充電電流為0.1A;電池電壓上升到2.9V以上時(shí),充電電流是1A,并且充電電流精度高,可以實(shí)現(xiàn)穩(wěn)定充電;當(dāng)電池電壓上升到4.2V時(shí),系統(tǒng)進(jìn)入恒壓充電模式,電感的磁路不平衡,電感消磁大于充磁,因而電感電流開(kāi)始下降,直到充電電流下降到0.1A時(shí),延遲一段時(shí)間(本文中設(shè)置為1.8ms),芯片充電使能信號(hào)關(guān)斷,整個(gè)充電過(guò)程結(jié)束。
[Abstract]:With the rapid development of portable electronic devices in modern society. DC/DC switch converters have been more and more used in various electronic devices by virtue of their excellent characteristics. At present, switching power converters used in battery charging are becoming the mainstream. The working principle and stability of single-ring average current mode charging chip based on BUCK topology are studied. Firstly, the working principle of the system is introduced in detail. Second. The system is modeled and the small signal transfer functions of each module in the loop are calculated respectively. Then the error amplifier and compensation network are designed according to the stability conditions of the system. The simulation results show that the open-loop DC gain is 76db, the bandwidth is 87kHz, and the phase margin is 56 degrees. Therefore, the whole loop meets the conditions of closed-loop stability. At the same time, the system has a relatively high power supply rejection ratio, DC power rejection ratio is 75 dB, at the switching frequency of the system power supply rejection ratio is 49 dB, so the system can work stably. Third. The main module circuit which affects the stability is designed. Finally, the module circuit and the whole system are simulated by HSPICE software. The charging chip adopts three-stage charging method: trickle current, constant current. Constant voltage charging mode improves charging efficiency. At the same time, the battery life can be increased. Single loop average current mode PWM(Pulse Width Modulation pulse width modulation is used in trickle current and constant current charging process. Control mode. And the system is in the closed-loop operation, so there will be loop stability in the charging process, so the loop of the whole system needs to be carefully designed. In this paper, the sampling amplifier module, error amplifier. The design of PWM comparator is introduced in detail, in which error amplifier is a key module to adjust the stability of the system, and its performance directly affects the stability of the system. The error amplifier used in this paper is a transconductance amplifier with folded common-gate structure, which has a wide common-mode input range, high output impedance, high gain and high response speed. Meet the stability requirements of the system; In the process of constant voltage charging, the system is in an open loop state, but the constant voltage process is very short, thus ensuring the accuracy of charging cut-off voltage. The switching frequency of 800kHz at 5V input voltage is ensured. The sampling resistance of 0.1 ohms, the whole simulation of the chip under the condition of trickle charging pin grounding, when the battery voltage is below 2.9 V, the charging current is 0.1 A. When the voltage of the battery rises above 2.9 V, the charging current is 1A, and the accuracy of charging current is high, which can realize stable charging. When the battery voltage rises to 4.2 V, the system enters the constant voltage charging mode, the magnetic circuit of the inductor is unbalanced, the inductance demagnetization is larger than the magnetization, so the inductance current begins to decrease until the charging current drops to 0.1A. Delay for a period of time (1.8ms in this paper, chip charging enable signal turned off, the entire charging process is over.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TM46
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王宗培,孫禮明,,孫寶奎;五相混合式步進(jìn)電動(dòng)機(jī)buck型驅(qū)動(dòng)系統(tǒng)單步響應(yīng)特性的研究[J];電工技術(shù)學(xué)報(bào);1997年06期
2 吳福永;高效BUCK變換器的設(shè)計(jì)[J];電力電子技術(shù);2001年03期
3 朱成花,張方華,嚴(yán)仰光;兩端穩(wěn)壓軟開(kāi)關(guān)雙向BUCK/BOOST變換器研究[J];南京航空航天大學(xué)學(xué)報(bào);2004年02期
4 劉興發(fā);周挺;王勝?lài)?guó);;BUCK變換器的一種多環(huán)控制研究[J];通信電源技術(shù);2006年06期
5 夏鵬;韋文生;姚云飛;崔徐佳;;一種風(fēng)光組合發(fā)電系統(tǒng)中的BUCK電路[J];溫州大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期
6 王斌;邰永紅;楊鄭浩;;低壓大電流高效率同步整流BUCK變換器的分析與設(shè)計(jì)[J];航空電子技術(shù);2013年02期
7 章賽軍,楊永宏,柯建興,李達(dá)義;電壓反饋型BUCK變換器環(huán)路補(bǔ)償設(shè)計(jì)[J];通信電源技術(shù);2004年06期
8 李榮;羅曉曙;賢燕華;;三階并聯(lián)BUCK變換器的建模及非線(xiàn)性動(dòng)力學(xué)行為初探[J];廣西物理;2006年01期
9 殷立;王順強(qiáng);;BUCK-BOOST變換器的輸出能量分析及電感電容優(yōu)化設(shè)計(jì)[J];自動(dòng)化應(yīng)用;2012年08期
10 林濤;高麗;丁元偉;;新型同步BUCK IC滿(mǎn)足主板外設(shè)供電的挑戰(zhàn)[J];今日電子;2014年04期
相關(guān)會(huì)議論文 前5條
1 陳進(jìn)軍;紀(jì)志成;;基于BUCK-BOOST變換器的T-S模糊建模與控制[A];第二十七屆中國(guó)控制會(huì)議論文集[C];2008年
2 尹麗云;陸益民;;BUCK變換器無(wú)靜差二次型最優(yōu)PID控制設(shè)計(jì)[A];中南六。▍^(qū))自動(dòng)化學(xué)會(huì)第24屆學(xué)術(shù)年會(huì)會(huì)議論文集[C];2006年
3 劉宇;謝品芳;羅全明;;單級(jí)BUCK-BOOST變換器實(shí)現(xiàn)APFC的原理及分析[A];中國(guó)電工技術(shù)學(xué)會(huì)電力電子學(xué)會(huì)第八屆學(xué)術(shù)年會(huì)論文集[C];2002年
4 康宗;方健;;一種用于ZVRT BUCK的零電壓檢測(cè)IC[A];四川省電子學(xué)會(huì)半導(dǎo)體與集成技術(shù)專(zhuān)委會(huì)2006年度學(xué)術(shù)年會(huì)論文集[C];2006年
5 吳濤;阮新波;;Buck類(lèi)模塊的輸入/輸出阻抗的標(biāo)準(zhǔn)化研究[A];2006中國(guó)電工技術(shù)學(xué)會(huì)電力電子學(xué)會(huì)第十屆學(xué)術(shù)年會(huì)論文摘要集[C];2006年
相關(guān)博士學(xué)位論文 前1條
1 羅全明;基本DC/DC變換器的組合拓?fù)浼翱刂品椒ㄑ芯縖D];重慶大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 汪W
本文編號(hào):1415620
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1415620.html