超級(jí)電容器電極材料的化學(xué)合成及其性能研究
本文關(guān)鍵詞:超級(jí)電容器電極材料的化學(xué)合成及其性能研究 出處:《安徽師范大學(xué)》2014年碩士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 超級(jí)電容器 電極材料 鈷酸鎳 碳材料 八硫化九鈷 泡沫鎳 納米管陣列 納米片陣列
【摘要】:為了應(yīng)對(duì)日益嚴(yán)重的能源危機(jī)和環(huán)境問(wèn)題,發(fā)展清潔的具有高功率密度和低消耗的可持續(xù)能源已經(jīng)迫在眉睫。近年來(lái),超級(jí)電容器(又叫電化學(xué)電容器)由于其高的功率密度、長(zhǎng)的使用壽命和低消耗等特點(diǎn)而受到人們廣泛的關(guān)注,并在不間斷功率器件、混合點(diǎn)動(dòng)力車(chē)和可再生能源等許多領(lǐng)域展示出巨大的潛在應(yīng)用價(jià)值。一般而言,超級(jí)電容器可以根據(jù)其儲(chǔ)能機(jī)理分為兩大類(lèi):雙電層電容器和贗電容電容器。 決定超級(jí)電容器性能的最關(guān)鍵因素就是電極材料的選擇,所以開(kāi)發(fā)出適當(dāng)?shù)碾姌O材料,可以增大超級(jí)電容器的電容量。本論文研究了多種電極材料的化學(xué)制備,并對(duì)其電化學(xué)儲(chǔ)能性能進(jìn)行了測(cè)試,主要內(nèi)容如下: 1、采用控制水熱條件(反應(yīng)時(shí)間,溫度),以不同鎳源,鈷源和堿性物質(zhì)為原料,制備出四種不同形貌的鈷酸鎳納米結(jié)構(gòu):納米絲、六角星、六棱柱和六角片,通過(guò)X-射線粉末衍射,X-射線光電子能譜,熱重分析,掃描電鏡和透射電鏡等多種手段對(duì)產(chǎn)物進(jìn)行表征;結(jié)合氮?dú)獾奈浇馕鼫y(cè)試和電化學(xué)性能測(cè)試,探索產(chǎn)物的比表面積和孔徑分布對(duì)材料電容性能的影響。 2、采用兩步的水熱反應(yīng),以鈷和鎳的氫氧化物作為犧牲模板,成功制備出直徑為200納米,厚度約50納米,壁厚10納米的NiCo2S4中空六角片納米結(jié)構(gòu),并利用X-射線粉末衍射,X-射線光電子能譜,X射線能量散射譜和掃描電鏡以及透射電鏡等對(duì)產(chǎn)物進(jìn)行表征,并對(duì)產(chǎn)物的比電容進(jìn)行了測(cè)試。 3、利用廢棄生物質(zhì)材料—蓮蓬為原材料,在不同的溫度下直接碳化制備出多孔碳材料,產(chǎn)物經(jīng)X-射線粉末衍射,X-射線光電子能譜,氮?dú)獾奈浇馕鼫y(cè)試,掃描電鏡以及透射電鏡分析,研究發(fā)現(xiàn)在600°C下所制備的碳材料具有高達(dá)563.4m2g1的比表面積,孔徑平均為2.2納米,作為超級(jí)電容器電極材料時(shí)測(cè)得電容為165Fg1,并表現(xiàn)出優(yōu)越的穩(wěn)定性能。 4、利用柯肯達(dá)爾效應(yīng),首次在泡沫鎳基底上制備出截面為六邊形的Co9S8納米管陣列,產(chǎn)物通過(guò)X-射線粉末衍射,X-射線光電子能譜表征其組成,由掃描電子顯微鏡以及透射電子顯微鏡觀察,其管徑約為120200nm,納米管壁厚約為40 60nm。作為超級(jí)電容器的電極,測(cè)得其比電容為1775Fg1,2000次充放電循環(huán)后任然保留最初容量的91.4%。 5、在泡沫鎳基底上水熱生長(zhǎng)出相互交織的Co-Ni雙氫氧化物(LDHs)納米片陣列,產(chǎn)物通過(guò)X-射線粉末衍射,X-射線光電子能譜,掃描電子顯微鏡和透射電子顯微鏡表征,納米片的厚度約為20納米,,當(dāng)直接用作超級(jí)電容器電極時(shí),比電容高達(dá)1735Fg1。
[Abstract]:In order to deal with the increasingly serious energy crisis and environmental problems, it is urgent to develop clean and sustainable energy with high power density and low consumption. Because of its high power density, long service life and low consumption, supercapacitors (also called electrochemical capacitors) have attracted wide attention, and have been widely used in uninterrupted power devices. Many areas, such as hybrid point cars and renewable energy, have shown great potential applications. In general, supercapacitors can be classified into two main categories according to their energy storage mechanisms:. Double layer capacitors and pseudo capacitor capacitors. The choice of electrode material is the most important factor to determine the performance of supercapacitor, so the appropriate electrode material is developed. In this paper, the chemical preparation of various electrode materials is studied, and its electrochemical energy storage performance is tested. The main contents are as follows: 1. Four kinds of nickel cobalt nanostructures with different morphologies were prepared by controlling hydrothermal conditions (reaction time, temperature, nickel source, cobalt source and alkaline material): nanowires, hexagonal star. The products were characterized by X ray powder diffraction X ray photoelectron spectroscopy thermogravimetric analysis scanning electron microscope and transmission electron microscope. The effects of the specific surface area and pore size distribution of the product on the capacitive properties of the materials were investigated by combining the adsorption and desorption tests of nitrogen and electrochemical performance tests. 2. By using two-step hydrothermal reaction and cobalt and nickel hydroxides as sacrificial templates, 200 nanometers in diameter and about 50 nanometers in thickness were successfully prepared. NiCo2S4 hollow hexagonal nanostructures with a wall thickness of 10 nm were obtained by X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). X-ray energy scattering spectra, scanning electron microscopy and transmission electron microscopy were used to characterize the product, and the specific capacitance of the product was measured. (3) porous carbon materials were prepared by carbonization at different temperatures using waste biomass material Lianpeng as raw material, and the products were analyzed by X-ray powder diffraction (X- ray) and X-ray photoelectron spectroscopy (XPS). The adsorption and desorption tests of nitrogen, SEM and TEM analysis show that the carbon materials prepared at 600 擄C have a specific surface area of 563.4m2g1. The average pore size is 2.2 nm. The capacitance measured as electrode material of supercapacitor is 165 Fg1, and it shows excellent stability. (4) Co9S8 nanotube arrays with hexagonal cross section were prepared on nickel foam substrate by Kokendal effect for the first time. The products were characterized by X-ray photoelectron spectroscopy (XPS). The scanning electron microscope and transmission electron microscope show that the diameter of the tube is about 120200 nm and the wall thickness of the nanotube is about 40 擄60nm. it is used as the electrode of supercapacitor. Its specific capacitance is 1 775 FG 1 / 2 000 charge / discharge cycles and 91.4% of the original capacity is retained. 5. Interlaced Co-Ni double hydroxide (Co-Ni) nanocrystalline arrays were grown by hydrothermal method on nickel foam substrates. The products were diffracted by X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the thickness of the nanocrystalline was about 20 nm, and the specific capacitance was 1735 Fg1 when it was directly used as a supercapacitor electrode.
【學(xué)位授予單位】:安徽師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TM53
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Chris Reynolds;;超級(jí)電容器進(jìn)展[J];今日電子;2010年01期
2 李晶;賴(lài)延清;金旭東;彭汝芳;劉業(yè)翔;;超級(jí)電容器的制造工藝優(yōu)化與性能研究[J];電池工業(yè);2010年03期
3 ;超級(jí)電容器 新能源的載體[J];電源世界;2010年08期
4 劉春娜;;超級(jí)電容器應(yīng)用展望[J];電源技術(shù);2010年09期
5 劉春娜;;超級(jí)電容器及其在新能源汽車(chē)中的應(yīng)用[J];電源技術(shù);2010年12期
6 高曉林;;電容器大家族的新貴—超級(jí)電容器[J];電力電容器與無(wú)功補(bǔ)償;2010年06期
7 于凌宇;;世界高端新產(chǎn)品超級(jí)電容器技術(shù)應(yīng)用新格局[J];電源技術(shù)應(yīng)用;2010年03期
8 Bob Cerullo;牛紀(jì)元;;超級(jí)電容器[J];汽車(chē)維修與保養(yǎng);2011年07期
9 ;超級(jí)電容器可作為能源驅(qū)動(dòng)電動(dòng)汽車(chē)[J];汽車(chē)零部件;2011年04期
10 劉紅梅;;由專(zhuān)利信息透視超級(jí)電容器電極材料的研究進(jìn)展[J];電子元件與材料;2011年08期
相關(guān)會(huì)議論文 前10條
1 趙健偉;倪文彬;王登超;黃忠杰;;超級(jí)電容器電極材料的設(shè)計(jì)、制備及性質(zhì)研究[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年
2 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應(yīng)的新型超級(jí)電容器——多孔碳電極材料的影響[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場(chǎng)摘要集[C];2010年
3 馬衍偉;;新型超級(jí)電容器石墨烯電極材料的研究[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第7分冊(cè))[C];2010年
4 劉不厭;彭喬;孫s
本文編號(hào):1410618
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1410618.html