基于雙諧振耦合的能量與信號傳輸技術(shù)研究
發(fā)布時間:2018-01-08 17:40
本文關(guān)鍵詞:基于雙諧振耦合的能量與信號傳輸技術(shù)研究 出處:《哈爾濱工業(yè)大學》2014年碩士論文 論文類型:學位論文
更多相關(guān)文章: 雙諧振耦合 無線能量傳輸 信號傳輸 等效電感 傳輸因子
【摘要】:無線能量傳輸技術(shù)在很多領(lǐng)域已經(jīng)出現(xiàn)了商品化應用,在如人體植入式設備,無線傳感器網(wǎng)絡等應用場合,往往需要信號的同時傳輸,以傳遞控制指令,反饋系統(tǒng)狀態(tài)等,具有實際的應用意義本課題采用雙諧振耦合結(jié)構(gòu),該結(jié)構(gòu)可以提供兩個分開的頻帶分別用作能量傳輸和信號傳輸,,在保證能量傳輸性能的基礎(chǔ)上,實現(xiàn)了較快的數(shù)據(jù)傳輸速率 首先,根據(jù)無線能量傳輸與近場磁通信技術(shù)的理論,將能量傳輸?shù)墓β逝c效率,信號傳輸?shù)墓β薯憫獣r間與帶寬作為本文衡量傳輸性能的主要參數(shù),分析了這些參數(shù)與電路品質(zhì)因數(shù)Q的關(guān)系 其次,對單端雙諧振電路進行了分析,提出了等效電感的概念,用于計算雙諧振電路的帶寬與響應時間提出了傳輸因子的概念,并將傳輸因子代替品質(zhì)因數(shù)作為衡量雙諧振電路能量與信號傳輸性能的參數(shù),得到了并聯(lián)線圈更適合作為耦合線圈的結(jié)論通過分析,雙諧振電路中的電容與電感取值,會直接影響到兩個諧振點的位置以及傳輸因子的大小,是系統(tǒng)設計中最重要的參數(shù)利用互感耦合模型對雙諧振耦合結(jié)構(gòu)進行了建模,并利用數(shù)學計算與電路仿真分析了電路中參數(shù)變化對傳輸性能的影響 再次,完成了整個傳輸系統(tǒng)的硬件設計選擇全橋逆變電路作為能量激勵源,采用利茲線繞制線圈,采用二進制振幅鍵控作為信號調(diào)制方案,采用電感耦合作為信號的加載方案 最后,對整個雙諧振耦合結(jié)構(gòu)傳輸系統(tǒng)進行了實驗與分析 針對能量傳輸主要分析了不同傳輸距離,不同接收端負載對系統(tǒng)的輸出功率和傳輸效率的影響在負載值小于10,傳輸距離小于120mm時可以實現(xiàn)70%以上的整體傳輸效率 針對信號傳輸,通過電感耦合能夠?qū)⑿盘栍行У募虞d,并且不會對能量傳輸產(chǎn)生影響實現(xiàn)了信號的分離以及調(diào)制解調(diào)通過分析,系統(tǒng)的響應時間決定了能夠?qū)崿F(xiàn)的最大數(shù)據(jù)傳輸速率在負載為1.31距離為122mm時,可實現(xiàn)最高56kHz的數(shù)據(jù)傳輸速率
[Abstract]:Wireless energy transmission technology has been commercialized in many fields, such as human implanted devices, wireless sensor networks and other applications, it is often necessary to transmit signals at the same time, in order to transfer control instructions. Feedback system states and so on, which has practical application significance. This subject adopts double resonant coupling structure, this structure can provide two separate frequency bands for energy transmission and signal transmission respectively. On the basis of guaranteeing the performance of energy transmission, the fast data transmission rate is realized. Firstly, according to the theory of wireless energy transmission and near-field magnetic communication technology, the power and efficiency of energy transmission, the power response time and bandwidth of signal transmission are taken as the main parameters to measure the transmission performance in this paper. The relationship between these parameters and circuit quality factor Q is analyzed. Secondly, the concept of equivalent inductance is put forward, which is used to calculate the bandwidth and response time of double resonant circuit. The transmission factor is used instead of the quality factor as the parameter to measure the energy and signal transmission performance of the double resonant circuit. The conclusion that the parallel coil is more suitable as the coupling coil is analyzed. The capacitance and inductance in the double resonant circuit will directly affect the position of the two resonance points and the size of the transmission factor. It is the most important parameter in the design of the system. The mutual inductance coupling model is used to model the double resonant coupling structure, and the influence of the parameter change on the transmission performance is analyzed by mathematical calculation and circuit simulation. Thirdly, the hardware design of the whole transmission system is completed. The full-bridge inverter circuit is chosen as the energy excitation source, the Leeds wire winding coil is used, and the binary amplitude keying is used as the signal modulation scheme. Loading Scheme using Inductance Coupling as signal Finally, the experiment and analysis of the whole transmission system with dual resonant coupling structure are carried out. According to the energy transmission, the main analysis of the different transmission distance, different receiver load on the system output power and transmission efficiency in the load value is less than 10. The overall transmission efficiency above 70% can be realized when the transmission distance is less than 120mm. For signal transmission, the signal can be loaded effectively by inductive coupling, and the signal separation and modulation and demodulation can be realized by analysis without any influence on energy transmission. The response time of the system determines that the maximum data transmission rate can be achieved at a maximum data rate of 56kHz when the load is 1.31 mm and the distance is 122 mm.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TM724
【參考文獻】
相關(guān)期刊論文 前9條
1 潘康生;;T型去耦等效電路[J];安慶師范學院學報(自然科學版);2005年04期
2 周曉東,張河;用于引信的能量和信息非接觸同步傳輸技術(shù)[J];兵工學報;2003年03期
3 李長生;張合;;基于磁共振的引信用能量和信息無線同步傳輸方法研究[J];兵工學報;2011年05期
4 周錦鋒;孫躍;蘇玉剛;戴欣;翟淵;;感應耦合電能與信號同步傳輸技術(shù)[J];重慶工學院學報(自然科學版);2009年04期
5 武瑛,嚴陸光,黃常綱,徐善綱;新型無接觸電能傳輸系統(tǒng)的性能分析[J];電工電能新技術(shù);2003年04期
6 孫躍;王琛琛;唐春森;戴欣;王智慧;;CPT系統(tǒng)能量與信號混合傳輸技術(shù)[J];電工電能新技術(shù);2010年04期
7 亢寶位;;IGBT發(fā)展概述[J];電力電子;2006年05期
8 武瑛,嚴陸光,徐善綱;新型無接觸電能傳輸系統(tǒng)的穩(wěn)定性分析[J];中國電機工程學報;2004年05期
9 傅文珍;張波;丘東元;王偉;;自諧振線圈耦合式電能無線傳輸?shù)淖畲笮史治雠c設計[J];中國電機工程學報;2009年18期
本文編號:1398089
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1398089.html
教材專著