燃料電池用新型聚酰亞胺及聚硫醚砜基質(zhì)子交換膜的研究
本文關鍵詞:燃料電池用新型聚酰亞胺及聚硫醚砜基質(zhì)子交換膜的研究 出處:《上海交通大學》2014年博士論文 論文類型:學位論文
更多相關文章: 質(zhì)子交換膜 交聯(lián) 后磺化 含咪唑基磺化聚酰亞胺 磺化聚硫醚砜 聚苯并咪唑
【摘要】:近年來,為了克服Nafion膜成本高、加工困難、高燃料透過率以及工作溫度較低(90 oC)的缺點,碳氫聚合物質(zhì)子交換膜受到了極大的關注和深入研究。其中,磺化碳氫聚合物膜主要應用于中低溫(110oC)質(zhì)子交換膜燃料電池,而酸摻雜碳氫聚合物膜則主要應用于高溫(150-200oC)質(zhì)子交換膜燃料電池。盡管兩種膜的研究都取得了較大進展,但性能尚不能完全滿足燃料電池汽車的實際使用要求。在磺化碳氫聚合物膜方面,目前存在的主要問題有:1)盡管通過提高離子交換容量(IEC)的方法可以提高質(zhì)子交換膜的電導率,但往往會導致膜顯著溶脹,甚至溶解,從而降低燃料電池的使用壽命;2)在低相對濕度下,膜的質(zhì)子導電率往往很低(10-2 S/cm),不能滿足實際使用要求;3)膜的化學穩(wěn)定性特別是抗自由基氧化穩(wěn)定性普遍較差。在酸摻雜聚合物膜方面,盡管隨著酸摻雜量的提高,質(zhì)子交換膜的電導率也逐漸增大,但這往往會導致膜力學強度的明顯下降,從而降低工作壽命。此外,這類膜還存在著酸滲漏的問題,隨著酸的流失,膜的質(zhì)子電導率逐漸降低。基于以上存在的問題,本論文設計并制備了一系列新型質(zhì)子交換膜材料,并深入研究了聚合物的化學結(jié)構(gòu)以及形態(tài)結(jié)構(gòu)與性能之間的關系,以求得到綜合性能良好的質(zhì)子交換膜,為未來這一領域的研究提供新的思路。一、利用新型二酐單體聯(lián)苯-4,4’-二基(二氧代)-4,4’-雙(1,8-萘二甲酸酐)(bpnda)與含咪唑基二胺2-(4-氨基苯基)-5-氨基苯并咪唑(apabi)以及1,3-雙(4-氨基苯氧基)苯(bapbz)進行共聚反應,制備了一系列咪唑基含量不同的高分子量聚酰亞胺(pis)。在50oc,24h的優(yōu)化條件下,用濃硫酸進行后磺化處理,成功得到一系列不同磺化度(iec)的含咪唑基磺化聚酰亞胺(spis)。將磺化聚酰亞胺薄膜(質(zhì)子狀態(tài))浸泡在180oc的多聚磷酸介質(zhì)中14h,進一步形成共價交聯(lián)。與未共價交聯(lián)膜(僅磺酸基與咪唑基之間離子交聯(lián))相比,這類離子交聯(lián)與共價交聯(lián)并存的質(zhì)子交換膜,不僅具有較低的吸水率和較高的尺寸穩(wěn)定性,抗自由基氧化性也大大提高。芬頓測試(80°c,3%h2o2+3ppmfeso4)的結(jié)果表明,盡管共價交聯(lián)膜cspi-1/1(注:由bapbz與apabi的摩爾比為1:1所制得的聚合物)與未共價交聯(lián)膜spi-1/2具有相近的iec,但前者的抗自由基氧化性顯著優(yōu)于后者(前者在芬頓試劑中開始溶解的時間是后者3倍)。此外,在去離子水中,這類離子交聯(lián)和共價交聯(lián)并存的磺化聚酰亞胺質(zhì)子交換膜質(zhì)子電導率可達0.07-0.30s/cm,表現(xiàn)出良好的綜合性能。二、以4,4’-二(4-氨基苯氧基)聯(lián)苯3,3’-二磺酸(bapbds)、1,4,5,8-萘四甲酸二酐(ntda)以及1,12-二氨基十二烷(dda)三種原料,通過聚合方式的改變,合成了無規(guī)共聚物、嵌段共聚物以及序列共聚物三種不同類型的磺化聚酰亞胺。長脂肪鏈段引入導致的結(jié)晶性能,使得嵌段共聚物以及序列共聚物膜在溶脹率上表現(xiàn)出明顯的各向異性(平面方向遠小于厚度方向),這有利于提高燃料電池的使用壽命。對于iec相同的共聚物膜,在測試條件相同時,嵌段共聚物膜的電導率最高,而無規(guī)共聚膜則最低。例如,嵌段共聚物膜b-x10y15(x10和y15分別表示疏水嵌段和親水嵌段的平均長度為10和15,余下類推)、序列共聚物膜s2以及無規(guī)共聚物膜r1的理論iec值都為1.94mmol/g,但它們在60°c去離子水中的質(zhì)子電導率分別為0.136s/cm、0.127s/cm以及0.100s/cm。此外,嵌段聚合物中親/疏水鏈段的長度不同也會導致質(zhì)子交換膜電導率的差異。例如,60°c,去離子水中,b-x5y7.5、b-x10y15以及b-x15y30的電導率分別為0.12s/cm、0.136s/cm以及0.126s/cm。三、以新型六元環(huán)二酐4,4’-(9-9-亞芴基)雙(4-苯氧基-1,8-萘酐)(fbpna)為a2型單體,以三(4-氨基苯基)胺(tapa)為b3型單體,按摩爾比1:1進行縮聚反應,成功得到了氨基封端的六元環(huán)型超支化聚酰亞胺(hbpi)。在此基礎上,用4-苯氧基1,8-萘酐(pna)對hbpi進行端基修飾反應,得到hbpi-pna超支化聚合物。在50oc,24h的優(yōu)化條件下,使用濃硫酸對上述超支化聚合物進行后磺化處理,成功制得一系列磺化度不同的超支化磺化聚酰亞胺(shbpi及shbpi-pna)。shbpi及shbpi-pna在大多數(shù)極性溶劑中均可以溶解,如dmso、dmac、dmf以及nmp等。用雙酚a型環(huán)氧樹脂(badge),對上述shbpi及shbpi-pna進行交聯(lián)制膜處理,成功得到了cshbpi及cshbpi-pna自支撐膜。cshbpi及cshbpi-pna膜具有良好的耐熱性、抗自由基氧化性以及電導率。60oc下,去離子水中,cshbpi-pna50%膜(iec=2.21)的電導率可達0.149s/cm,高于nafion112。此外,在低濕度條件下,cshbpi-pna50%膜的電導率明顯高于第二章中合成的線性無規(guī)共聚物spi-1/1。四、以4,4’-二氯二苯砜、4,4’-二氯二苯砜-3,3’-二磺酸鈉和4,4’-二巰基二苯硫醚為單體進行縮聚,制得了磺化度為80%的磺化聚硫醚砜(spssf80)。將spssf80與含氨基聚苯并咪唑(h2n-pbi)進行共混,并使用3-(2,3-環(huán)氧丙氧)丙基三甲氧基硅烷(kh-560)與雙酚a環(huán)氧樹脂(badge)兩種交聯(lián)劑,制備了一系列共價交聯(lián)共混膜。實驗結(jié)果表明,與純磺化聚硫醚砜膜spssf80相比,共價交聯(lián)膜的最大拉伸強度均有所增加,而斷裂伸長率則略有下降。由于pbi組分的加入,并輔以共價交聯(lián)處理,共混膜的抗自由基氧化性有了很大程度的提高。例如,共價交聯(lián)膜spssf80/h2n-pbi/kh-560=7/1/3在芬頓測試(80°c,3%h2o2+3ppmfeso4)98min后才開始破裂,比純的磺化聚硫醚砜spssf50長四倍(20min)。此外,共價交聯(lián)處理還抑制了膜的溶脹并提高了膜的耐水性。由于親水性二氧化硅網(wǎng)絡結(jié)構(gòu)的形成,低濕度條件下,使用kh-560為交聯(lián)劑的共混膜的電導率要高于使用雙酚a型環(huán)氧樹脂(badge)為交聯(lián)劑的共混膜。在去離子水中,所有的交聯(lián)膜均表現(xiàn)出與nafion相當?shù)馁|(zhì)子電導率。五、使用新型間位含咪唑基二胺單體雙(2-(3-氨基苯基))二苯并咪唑(mbapbi)或2-(4-氨基苯基)-5-氨基苯并咪唑(apabi)與4,4’-二氨基二苯醚(oda)以及bpnda進行共聚反應,合成了一系列高分子量的含咪唑基聚酰亞胺mpibis以及pibis。mpibis以及PIBIs表現(xiàn)出十分優(yōu)異的耐熱性和抗自由基氧化性。在180°C下,多聚磷酸或磷酸溶液中浸泡5 h,可對mPIBIs以及PIBIs進行酸摻雜。結(jié)果表明所有的膜均可達到很高的摻雜量(300 wt%),其中PIBIs膜的摻雜量總體高于mPIBIs膜,這很可能是由于PIBIs的溶解性較好。此外,這類膜也具有較高的電導率(均大于0.02 S cm-1),其中多聚磷酸摻雜量最高的PIBI-1/0,其在170°C、0%相對濕度下的質(zhì)子電導率高達0.26 S cm-1。在磷酸摻雜量為300 wt%時,160°C下,PIBI-1/1膜的彈性模量可達0.1 GPa,高出相似磷酸摻雜量的商業(yè)化mPBI一個數(shù)量級。使用磷酸摻雜量300 wt%的PIBI-1/1膜,在180°C的H2/空氣燃料電池中測試得知,其最大功率密度可達350 mW cm-2,展示出良好的應用前景。
[Abstract]:In recent years, in order to overcome the Nafion film of high cost, difficult processing, high fuel permeability and low working temperature (90 oC) the shortcomings of hydrocarbon polymer proton exchange membrane has been concerned and researched greatly. The sulfonated hydrocarbon polymer film is mainly used in low temperature (110oC) of proton exchange membrane fuel cell, and acid doped polymer film of hydrocarbon is mainly used in high temperature (150-200oC) of proton exchange membrane fuel cell. Although the study of two kinds of film have made great progress, but the performance is still not fully meet the requirements of the actual use of fuel cell vehicles. The sulfonated hydrocarbon polymer membrane, the main problems are: 1) though the exchange to improve the capacity of ion (IEC) method can improve the conductivity of proton exchange membrane, but often leads to significant membrane swelling, even dissolution, thereby reducing fuel battery life; 2) at low relative humidity Next, the proton conductivity of the membrane tends to be low (10-2 S/cm), can not meet the actual requirements; 3) the chemical stability of the membrane especially the oxidative stability is generally poor. In the acid doped polymer film, although with the increase of amount of doping acid, proton exchange membrane electric conductivity gradually increased, but this often leads to decreased membrane mechanical strength, thereby reducing the working life. In addition, this kind of film has acid leakage problems with acid erosion, membrane proton conductivity decreased gradually. Based on the above problems, this paper presents the design and preparation of a series of novel proton exchange membrane material, and deeply study on the relationship between the chemical structure and morphology of the polymer structure and properties, in order to get the good performance of proton exchange membrane, providing new ideas for future research in this field. A new type, using two anhydride monomer biphenyl -4, 4 '- two base (two oxygen generation) -4,4' - bis (two 1,8- naphthalene anhydride) (bpnda) and imidazole containing two amine 2- (4- aminophenyl) -5- amino benzimidazole (Apabi) and 1,3- (double 4- aminophenoxy) benzene (bapbz) by copolymerization of a high molecular weight polyimide in the same series of imidazole were prepared (PIs). In 50oc, the optimization of 24h condition after treatment with concentrated sulfuric acid sulfonation, successfully obtained a series of different degree of sulfonation (IEC) containing imidazole sulfonated polyimide (SPIs). The sulfonated polyimide film (proton state) soaked in more than 180oC poly phosphoric acid medium 14h, further the formation of covalent cross-linking. With non covalent crosslinking membrane (only between sulfonic acid and ionic crosslinking) compared to the proton ionic cross-linking and covalent crosslinking coexist exchange membrane, dimensional stability, not only has low water absorption and high, anti free radical oxidation is also greatly improved Fenton. The test (80 C, 3%h2o2+3ppmfeso4). The results show that although the covalent cross-linking of membrane cspi-1/1 (Note: the molar ratio of bapbz and Apabi for the 1:1 of the polymer) have similar IEC and non covalent crosslinking of spi-1/2 film, but the anti free radical oxidation was significantly better than the latter (former Fenton starts to dissolve in the reagent the time is 3 times the latter). In addition, in deionized water, this kind of sulfonated polyimide proton ionic cross-linking and covalent cross-linking both proton exchange membrane conductivity can reach 0.07-0.30s/cm, show good overall performance. In two, 4,4 '- two (4- aminophenoxy) 3,3' - biphenyl two sulfonic acid (bapbds). Four two 1,4,5,8- naphthalene acid anhydride (ntda) and 1,12- (DDA) two amino twelve alkyl three kinds of raw materials, through the polymerization mode change, random copolymer, block copolymer and copolymer sequences of three different types of long chain fatty sulfonated polyimide. Using crystallization properties caused by the block copolymer and the sequence copolymer film shows obvious anisotropy in the swelling rate (plane direction is far less than the thickness direction), which is conducive to improve the fuel battery life. For the same IEC copolymer film, in the same test conditions, the highest conductivity of block copolymer films however, random copolymer membrane is the lowest. For example, block copolymer membrane b-x10y15 (X10 and Y15 respectively, the average length of hydrophobic block segment and hydrophilic block was 10 and 15, and so of the rest), the theory of S2 and IEC sequence copolymer film random copolymer film R1 value is 1.94mmol/g, but they are in 60 C deionized water proton conductivity were 0.136s/cm, 0.127s/cm and 0.100s/cm. in addition, block copolymers in hydrophilic / hydrophobic segments of different lengths can lead to differences in proton exchange membrane conductivity. For example, 60 degrees C, deionized water, B-x5y7.5, b-x10y15 and b-x15y30 conductivity respectively 0.12s/cm, 0.136s/cm and 0.126s/cm. three, a new six membered ring two '- 4,4 anhydride (9-9- sub fluorene (4-) - phenoxy -1,8- naphthalene anhydride) (fbpna) A2 type monomer, with three (4- aminophenyl) amine (tapa) was B3 type monomer molar of 1:1 polycondensation reaction, we successfully obtained six membered ring amino terminated hyperbranched polyimide (HBPI). On this basis, 4- phenoxy 1,8- (PNA) of naphthalene anhydride modified reaction to HBPI, hbpi-pna hyperbranched polymers. In 50oc, the optimization conditions of 24h next, the hyperbranched polymer were sulfonated with concentrated sulfuric acid, successfully prepared a series of different sulfonated hyperbranched sulfonated polyimides (shbpi and shbpi-pna) of.Shbpi and shbpi-pna can be dissolved in most polar solvents such as DMSO, DMAC, DMF and NMP. With bisphenol A epoxy resin (badge), Crosslinked membrane treatment on the shbpi and shbpi-pna, cshbpi and cshbpi-pna successfully obtained self support membrane.Cshbpi and cshbpi-pna membrane has good heat resistance, anti free radical oxidation and conductivity of.60oc, deionized water, cshbpi-pna50% (iec=2.21) membrane conductance rate of 0.149s/cm is higher than nafion112., in addition, in low humidity conditions the electrical conductivity of cshbpi-pna50% film was significantly higher than that of linear synthesis in chapter second copolymer spi-1/1. four, with 4,4 '- two chloro two phenyl sulfone, 4,4' - two chloro two phenyl sulfone sulfonate and two -3,3 '- 4,4' - two two mercapto phenyl sulfide as monomer was prepared by polycondensation, sulfonation sulfonation degrees 80% poly sulfide sulfone (spssf80). The spssf80 and amino containing polybenzimidazole (h2n-pbi) blends, and use 3- (2,3- 3-epoxypropoxy) propyltrimethoxysilane (KH-560) and bisphenol A epoxy resin (badge) two was prepared by crosslinking agent. A series of covalent crosslinking blend membrane. The experimental results show that compared with pure sulfonated poly sulfide sulfone membrane spssf80, which increases the maximum tensile strength of covalent crosslinking membrane, but the elongation decreased slightly. The PBI component added, supplemented by covalent crosslinking treatment, anti free radical oxidation of the blend membrane has been greatly the degree of improvement. For example, covalent crosslinking of membrane spssf80/h2n-pbi/kh-560=7/1/3 in Fenton test (80 C, 3%h2o2+3ppmfeso4) after 98min began to rupture, than pure sulfonated poly sulfide sulfone spssf50 four times (20min). In addition, covalent cross-linking treatments also inhibited the swelling of the membrane and improve the water resistance of the film due to the formation of hydrophilic. Silica network structure, low humidity conditions, the conductivity of blend membrane using KH-560 as crosslinking agent than using bisphenol A epoxy resin (badge) as crosslinking agent. The blend membrane in deionized water, all over Combined membrane showed quite Nafion proton conductivity. Five, using a novel imidazole containing two amine monomer bis (2- (3- aminophenyl) two) benzimidazole (mbapbi) or 2- (4- aminophenyl) -5- amino benzimidazole (Apabi) and 4,4 '- two amino two phenyl ether (ODA) and bpnda by copolymerization of imidazole polyimide mpibis and pibis.mpibis and PIBIs showed the heat resistance and anti free radical oxidation of a series of excellent with high molecular weight was synthesized. Under the temperature of 180 C poly phosphoric acid or phosphoric acid soaking solution for 5 h of acid doping on mPIBIs and PIBIs. Results that can all reach the film doping amount is very high (300 wt%), the doping amount of overall PIBIs film is higher than that of mPIBIs membrane, which is likely to be due to the solubility of PIBIs is better. In addition, it also has a high conductivity film (greater than 0.02 S cm-1), and poly phosphoric acid doping The highest PIBI-1/0 in 170 ~ C, 0% relative humidity of the proton conductivity up to 0.26 S cm-1. in phosphoric acid doping amount is 300 wt%, 160 ~ C, the elastic modulus of PIBI-1/1 film is 0.1 GPa, higher than the commercial mPBI similar phosphate doped one order. PIBI-1/1 film using phosphoric acid the doping amount of 300 wt%, that test H2/ air fuel cell at 180 DEG C, the maximum power density of 350 mW cm-2, shows a good application prospect.
【學位授予單位】:上海交通大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TM911.4
【相似文獻】
相關期刊論文 前10條
1 李瓊;李薇;張海寧;潘牧;;聚合物質(zhì)子溶劑在質(zhì)子交換膜中的應用[J];電源技術(shù);2011年04期
2 張增英;;氟離子交換膜[J];杭州化工;1991年04期
3 孫紅;欒麗華;吳鐵軍;唐玉蘭;王遜;;質(zhì)子交換膜中的傳質(zhì)分析[J];工程熱物理學報;2012年02期
4 艾明歡;李海濱;;超薄CsH_2PO_4/SiO_2復合質(zhì)子交換膜的制備[J];材料導報;2012年04期
5 楊萌;相艷;王慕冰;康思聰;徐惠彬;;化學與生物改性合成質(zhì)子交換膜[J];化學進展;2009年01期
6 吳魁;解東來;;高溫質(zhì)子交換膜研究進展[J];化工進展;2012年10期
7 石倩茹;陶慷;章勤;薛立新;張堯劍;;離子液體在質(zhì)子交換膜中的應用研究進展[J];膜科學與技術(shù);2013年03期
8 羅居杰;宋艷慧;崔培培;謝小玲;;接枝磺酸基質(zhì)子交換膜的制備及性能研究[J];化工新型材料;2014年03期
9 王盎然;包永忠;翁志學;黃志明;;丙烯腈-對苯乙烯磺酸共聚物質(zhì)子交換膜的合成與性能[J];高;瘜W工程學報;2010年05期
10 顧爽,賀高紅,吳雪梅,林暢;新型燃料電池質(zhì)子交換膜的研究進展[J];膜科學與技術(shù);2005年05期
相關會議論文 前10條
1 張燕梅;方軍;伍永彬;;用于堿性直接甲醇燃料電池的新型含氟陰離子交換膜的制備及表征[A];中國化學會第十一屆全國氟化學會議論文摘要集[C];2010年
2 徐維林;陸天虹;邢巍;;低甲醇透過質(zhì)子交換膜的研究[A];第十二屆中國固態(tài)離子學學術(shù)會議論文集[C];2004年
3 劉盛洲;張興鵬;印杰;;嵌段長度對磺酸基嵌段共聚物質(zhì)子交換膜性能的影響研究[A];2006年全國高分子材料科學與工程研討會論文集[C];2006年
4 石守穩(wěn);陳旭;;浸泡質(zhì)子交換膜力學性能及其微觀變形機理的研究[A];中國力學大會——2013論文摘要集[C];2013年
5 馮慶霞;張冬芳;嚴六明;;納米復合H_3PO_4-BPO_4-ABPBI高溫質(zhì)子交換膜的制備與表征[A];中國化學會第27屆學術(shù)年會第10分會場摘要集[C];2010年
6 李林繁;于洋;鄧波;虞鳴;謝雷東;李景燁;陸曉峰;;輻射接枝法制備質(zhì)子交換膜的研究[A];中國核科學技術(shù)進展報告——中國核學會2009年學術(shù)年會論文集(第一卷·第8冊)[C];2009年
7 王博;王新東;王文紅;張紅飛;陳玲;;燃料電池質(zhì)子交換膜電導率的測試方法研究[A];冶金研究中心2005年“冶金工程科學論壇”論文集[C];2005年
8 薛松;尹鴿平;;磺化聚醚醚酮/磷鎢酸復合質(zhì)子交換膜[A];第十三次全國電化學會議論文摘要集(上集)[C];2005年
9 朱靖;邵柯;那輝;;基于靜電紡絲技術(shù)的納米纖維質(zhì)子交換膜材料[A];2009年全國高分子學術(shù)論文報告會論文摘要集(上冊)[C];2009年
10 紀曉波;嚴六明;陸文聰;馬和平;;酸堿質(zhì)子交換膜中質(zhì)子動力學行為及協(xié)同效應[A];中國化學會第27屆學術(shù)年會第14分會場摘要集[C];2010年
相關重要報紙文章 前1條
1 本報記者 李香才;質(zhì)子交換膜燃料電池技術(shù)取得進展[N];中國證券報;2013年
相關博士學位論文 前10條
1 袁森;燃料電池用新型聚酰亞胺及聚硫醚砜基質(zhì)子交換膜的研究[D];上海交通大學;2014年
2 王曉恩;復合質(zhì)子交換膜機械增強與溫濕度響應特性[D];武漢理工大學;2011年
3 鐘雙玲;直接甲醇燃料電池用新型質(zhì)子交換膜的制備與性能研究[D];吉林大學;2008年
4 曾松軍;新型聚倍半硅氧烷基酸—堿無水質(zhì)子交換膜的制備與性能研究[D];湖南大學;2011年
5 紀曉波;質(zhì)子交換膜中甲醇遷移及其機理的分子動力學模擬研究[D];上海大學;2009年
6 張海秋;復合型質(zhì)子交換膜的結(jié)構(gòu)與性能研究[D];吉林大學;2009年
7 邸志崗;玻璃基質(zhì)子交換膜的制備與性能研究[D];上海交通大學;2014年
8 吳丹;聚苯醚基質(zhì)子交換膜的制備與表征[D];中國科學技術(shù)大學;2009年
9 楊武斌;直接甲醇燃料電池用新型質(zhì)子交換膜的制備與表征[D];北京交通大學;2008年
10 徐楠;燃料電池用新型交聯(lián)質(zhì)子交換膜的研究[D];上海交通大學;2010年
相關碩士學位論文 前10條
1 陳駿;金屬雙極板質(zhì)子交換膜燃料電池內(nèi)阻研究[D];武漢理工大學;2014年
2 韓澍;含羧基磺化聚芳醚酮砜類質(zhì)子交換膜材料的制備與性能研究[D];長春工業(yè)大學;2015年
3 梁宇;交聯(lián)型直接甲醇燃料電池質(zhì)子交換膜的制備及性能研究[D];蘭州大學;2015年
4 薛童;磺化嵌段聚醚砜質(zhì)子交換膜的制備與改性[D];南京理工大學;2015年
5 袁祖鳳;磺化聚芳酸砜類側(cè)鏈型質(zhì)子交換膜的制備及改性[D];南京理工大學;2015年
6 嚴思佳;雙棲型磷酸化殼聚糖質(zhì)子交換膜的制備及表征[D];湖南大學;2011年
7 牛春朋;基于5-取代—四氮唑功能團的新型質(zhì)子交換膜[D];鄭州大學;2011年
8 張惠敏;分子篩固載雜多酸—有機復合質(zhì)子交換膜的研究[D];同濟大學;2008年
9 王芳;質(zhì)子交換膜退化機理研究[D];武漢理工大學;2008年
10 郝玲芳;新型三氮唑質(zhì)子交換膜的設計與合成[D];鄭州大學;2011年
,本文編號:1394547
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1394547.html