天然氣電廠CCS Ready評(píng)估—高井電廠CCS Ready的條件評(píng)估及能耗分析
本文關(guān)鍵詞:天然氣電廠CCS Ready評(píng)估—高井電廠CCS Ready的條件評(píng)估及能耗分析 出處:《北京交通大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 二氧化碳捕獲 二氧化碳封存 CCS Ready CCS改造評(píng)估 能源應(yīng)用 天然氣熱電聯(lián)產(chǎn)發(fā)電廠 模擬優(yōu)化 能耗分析
【摘要】:近年來,隨著人類工業(yè)活動(dòng)的快速發(fā)展,越來越多的化石燃料燃燒以及綠色植被的減少,大氣中CO2的含量逐年增加。應(yīng)對(duì)全球氣候變暖,CO2的減排勢(shì)在必行。 目前,在降低C02排放量的方法中,C02的捕集和封存技術(shù)(CCS)將成為未來的發(fā)展趨勢(shì)。CCS技術(shù)可將C02從排放源中捕獲,然后永久的封存于地下。然而,實(shí)施CCS目前仍然面臨著重大的技術(shù)、法律、政策、以及大規(guī)模實(shí)施的經(jīng)濟(jì)障礙。解決這些障礙,需要一定的時(shí)間,因此,CCS Ready的概念應(yīng)運(yùn)而生。 作為清潔能源,天然氣發(fā)電相對(duì)環(huán)保,天然氣電廠具有更高的能源效率。但在燃?xì)狻羝?lián)合循環(huán)機(jī)組產(chǎn)生的煙道氣中仍存在大量的二氧化碳。因此,從長(zhǎng)遠(yuǎn)考慮,天然氣發(fā)電廠需通過CCS技術(shù)減少二氧化碳的排放。當(dāng)強(qiáng)制減排的監(jiān)管措施和經(jīng)濟(jì)激勵(lì)機(jī)制出現(xiàn),CCS Ready電廠能夠較容易地改造成CCS電廠。 本文主要研究了: (1)天然氣發(fā)電的基本情況以及國(guó)內(nèi)外CCS和CCS Ready的定義、研究現(xiàn)狀、CCS Ready的國(guó)際基準(zhǔn)和法規(guī)。以高井NGCC-CHP電廠為例,計(jì)算得出電廠在全廠90%CO2捕獲規(guī)模下的CO2捕獲量為445.2t/h。根據(jù)電廠實(shí)際情況及捕獲量,參考國(guó)際學(xué)術(shù)研究及以往使用經(jīng)驗(yàn),對(duì)比C02捕獲技術(shù)方案,為高井電廠選擇燃燒后捕獲CO2MEA化學(xué)吸收法。 (2)采用Aspen Plus模擬軟件對(duì)捕獲流程進(jìn)行模擬,得出高井電廠CO2捕獲系統(tǒng)的尺寸。模擬計(jì)算出高井電廠捕獲設(shè)備共18套,其中洗滌塔塔徑7m,高24m;吸收塔塔徑10m,高27m;再生塔塔徑6m,高21m。 (3)采用Aspen Plus模擬軟件對(duì)捕獲流程進(jìn)行模擬,得出高井電廠CO2捕獲系統(tǒng)的電耗、能耗和物耗,并通過調(diào)節(jié)主要參數(shù)進(jìn)一步優(yōu)化工藝過程。模擬得出捕獲系統(tǒng)每捕獲1噸CO2消耗的能量為3.53GJ/tCO2,捕獲系統(tǒng)的總電耗為74MW/h,消耗循環(huán)冷卻水量為114m3/tCO2。調(diào)節(jié)吸收劑濃度、貧液負(fù)荷、再生塔壓力、再生塔入口富液溫度,最終得出,MEA吸收劑最佳濃度為30%,貧液負(fù)荷在0.25mol CO2/mol MEA,再生塔壓力為2bar,再生塔入口溫度為90℃時(shí),捕獲條件最優(yōu)。 (4)電廠蒸汽循環(huán)與C02吸收系統(tǒng)的整合辦法。對(duì)比了三種外部供熱系統(tǒng)為再沸器提供能量的方案,最終選擇應(yīng)用電廠內(nèi)部的蒸汽循環(huán)供給再生所需能量。分析得出選擇中壓和低壓后部分330℃、0.36MPa蒸汽作為進(jìn)入再生塔底部再沸器熱源,根據(jù)模擬得出的C02捕獲能耗,計(jì)算出全廠三臺(tái)機(jī)組需要的總蒸汽量為598.94t/h。 (5)高井NGCC-CHP電廠滿足CCS Ready要求的必要條件和障礙,主要對(duì)捕獲就緒方面做出詳細(xì)評(píng)估。目前,高井電廠在煙氣脫硫脫硝、冷卻水系統(tǒng)和消防方面已經(jīng)達(dá)到了捕獲就緒的要求。高井電廠還需要進(jìn)行捕獲設(shè)備和改造空間的預(yù)留,蒸汽輪機(jī)及輔助系統(tǒng)的改造,增加捕獲污水處理系統(tǒng)、相關(guān)電氣及管道構(gòu)架設(shè)施、汽水分析監(jiān)測(cè)點(diǎn)并做好CCS電廠安全運(yùn)行預(yù)案;估算得出高井電廠新增總面積約為90020m2,其中CO2捕獲設(shè)備占地面積為87320m2,污水處理廠、藥品倉(cāng)庫(kù)、維修車間、停車場(chǎng)、卸貨區(qū)等占地面積2700m2,畫出捕獲設(shè)備的平面示意圖。另外,介紹了運(yùn)輸就緒和封存就緒的基本要求,并根據(jù)高井電廠的實(shí)際情況做出評(píng)估。 (6)選擇高井電廠蒸汽輪機(jī)的改造方案。分別對(duì)比低壓氣缸節(jié)流、低壓氣缸浮壓以及低壓氣缸離合連接改造的優(yōu)缺點(diǎn)以及對(duì)電廠的影響,最終選擇低壓氣缸浮壓的方式作為高井NGCC-CHP電廠的蒸汽輪機(jī)改造方案。 (7)電廠在ISO工況下,添加C02捕獲設(shè)備對(duì)電廠整體發(fā)電效率的影響。研究一臺(tái)機(jī)組的分析結(jié)果得出,添加C02捕獲設(shè)備后電廠發(fā)電效率的損失約為15.4%,其中再沸器能耗損失為45.24MW,使發(fā)電損失9.97%;捕獲設(shè)備電耗為24.7MW,使發(fā)電損失5.4%。 (8)從政策、資金成本、和高井電廠的實(shí)際情況等方面,總結(jié)了高井電廠實(shí)現(xiàn)CCS Ready存在的差距,并對(duì)我國(guó)未來發(fā)展CCS Ready進(jìn)行了展望。
[Abstract]:In recent years, with the rapid development of human industrial activities, more and more fossil fuel burning and green vegetation decrease, the content of CO2 in the atmosphere increases year by year. To deal with global warming, CO2 emission reduction is imperative.
At present, the method to reduce C02 emission, capture and sequestration of C02 (CCS) will become the future development trend of the technology of.CCS C02 can be discharged from the source capture, then permanently sealed in the ground. However, the implementation of CCS is still facing major technology, law, policy, and large-scale the implementation of the economic barriers. To solve these obstacles, take some time, therefore, the concept of CCS Ready came into being.
As a clean energy, natural gas power relative to environmental protection, natural gas power plant has a higher energy efficiency. But there are still a lot of carbon dioxide in flue gas generated in the gas steam combined cycle unit. Therefore, in the long term, natural gas power plants to reduce carbon dioxide emissions by CCS technology. When the mandatory supervision measures and economic incentive mechanism, CCS Ready power plant can be easily transformed into CCS power plant.
This paper mainly studies the following:
(1) the research status quo of natural gas power generation, definition, domestic and foreign CCS and CCS Ready, CCS Ready international standards and regulations. With high well NGCC-CHP power plant as an example, calculated the power plant in the plant 90%CO2 capture scale under CO2 capture capacity of 445.2t/h. according to the actual situation of the power plant and the capture, international academic research reference and past experience, comparison of C02 capture technology scheme, selection of post combustion capture CO2MEA chemical absorption method for Gaojing Power Plant.
(2) Aspen Plus simulation software is applied to simulate the capture process, and the size of CO2 acquisition system in the high well power plant is simulated. The simulation calculation shows that there are 18 sets of acquisition devices in the high well power plant, including washing tower diameter 7m, high 24m, absorption tower diameter 10m, high 27m, regeneration tower diameter 6m, high 21m..
(3) using Aspen Plus to capture process simulation software, the high power consumption of power plant CO2 wells capture system, energy and material consumption, and by adjusting the main parameters to further optimize the process. The simulated capture system each capture the consumption of 1 tons of CO2 energy is 3.53GJ/tCO2, the total power consumption of acquisition system of 74MW/h, consumption cycle the cooling water to regulate the 114m3/tCO2. concentration of absorbent, poor liquid load, regeneration tower pressure regeneration tower entrance rich liquid temperature, finally, the optimum MEA absorbent concentration is 30%, the lean liquid load in 0.25mol regeneration tower CO2/mol MEA, pressure 2bar, regeneration tower entrance temperature is 90 degrees centigrade, capture the optimal conditions.
(4) steam cycle and C02 power plant absorption system. Compared with the methods of integrating three kinds of external heating system for the reboiler to provide energy solutions, finally choose the energy needed to supply steam cycle power plant regeneration and application. Internal analysis selection of medium and low voltage part after 330 DEG C, 0.36MPa as steam enters into the regenerator bottom reboiler according to the simulation results of the heat source device, C02 capture energy, calculate the total amount of steam to the three units of the 598.94t/h.
(5) high wells NGCC-CHP power plant necessary condition to meet CCS Ready requirements and main obstacles, make a detailed assessment of the capture ready. At present, Gaojing Power Plant NOx in flue gas desulfurization, cooling water system and fire has reached the capture ready. Gaojing Power Plant needs to capture equipment and improvement of the space reserved the transformation, steam turbine and auxiliary system, increase the capture of the sewage treatment system, electrical and pipeline architecture facilities, monitoring and analysis of soda do CCS power plant safe operation plan; estimate that new Takai power plant a total area of about 90020m2, which covers an area of 87320m2 CO2 capture equipment, sewage treatment plant, warehouse, workshop, parking lot, unloading zone covers an area of 2700m2, draw the plane capture device diagram. In addition, this paper introduces the basic requirements of transport and storage is ready, and according to the high wells power plant Make an assessment of the actual situation.
(6) select the reconstruction scheme of Gaojing Power plant steam turbine low pressure cylinder respectively. Comparing the advantages and disadvantages of throttling, low pressure cylinder floating pressure and low pressure cylinder clutch connection and influence on the transformation of the power plant, the final choice of low pressure cylinder floating pressure way as the steam turbine retrofit scheme of Takai NGCC-CHP power plant.
(7) power plant in ISO condition, affect the efficiency of power generation equipment to add C02 to capture the whole power plant. Analysis of the results of a unit, add C02 capture device after power generation efficiency loss is about 15.4%, the reboiler energy loss is 45.24MW, the power loss of 9.97%; capture equipment, the power consumption is 24.7MW. The power loss of 5.4%.
(8) from the policy, the cost of capital and the actual situation of Gao Jing power plant, the paper summarizes the gap between CCS Ready and the future development of CCS Ready.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:X511;X773
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭啟穩(wěn);;天然氣發(fā)電在中國(guó)的應(yīng)用前景[J];城市燃?xì)?2006年01期
2 于海琴;李進(jìn);劉政修;魏慶朝;田秀君;陳蕊;;火力發(fā)電廠煙氣中CO_2捕獲技術(shù)和膜吸收的應(yīng)用分析[J];電力技術(shù);2010年09期
3 巢清塵;陳文穎;;碳捕獲和存儲(chǔ)技術(shù)綜述及對(duì)我國(guó)的影響[J];地球科學(xué)進(jìn)展;2006年03期
4 王澤平;周濤;張記剛;李洋;;電廠二氧化碳捕捉技術(shù)對(duì)比研究[J];環(huán)境科學(xué)與技術(shù);2011年11期
5 張軍;李桂菊;;二氧化碳封存技術(shù)及研究現(xiàn)狀[J];能源與環(huán)境;2007年02期
6 康玉潔;;燃?xì)?蒸汽聯(lián)合循環(huán)發(fā)電系統(tǒng)的現(xiàn)狀和展望[J];電氣時(shí)代;2013年06期
7 王彩紅;林雄超;董敏;王永剛;;ASPEN PLUS在化工實(shí)驗(yàn)教學(xué)和科研中的應(yīng)用[J];化工時(shí)刊;2009年06期
8 梁志武;那艷清;李文生;TONTI WACH WUTHIKUL P T;;單乙醇胺(MEA)捕獲二氧化碳過程解吸能耗的模擬[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年11期
9 衛(wèi)博;劉丹;;復(fù)合胺與MEA吸收法回收二氧化碳的研究[J];河南化工;2012年05期
10 李天成,馮霞,李鑫鋼;二氧化碳處理技術(shù)現(xiàn)狀及其發(fā)展趨勢(shì)[J];化學(xué)工業(yè)與工程;2002年02期
,本文編號(hào):1379714
本文鏈接:http://sikaile.net/kejilunwen/dianlilw/1379714.html