Anion Exchange Membranes Structure Control and Performance E
發(fā)布時間:2022-01-09 11:03
為滿足廢水處理、堿性燃料電池、氣體分離等工藝的要求,制備性能優(yōu)良的新型離子交換膜顯得尤為重要。本論文針對離子交換膜的應(yīng)用領(lǐng)域,制備出不同用途的新型陰離子交換膜,包括聚合物骨架結(jié)構(gòu)的選擇和功能基團結(jié)構(gòu)的調(diào)控。論文的主要內(nèi)容是制備新型陰離子交換膜并應(yīng)用于擴散透析,電滲析和堿性燃料電池過程。參考其不同的性質(zhì),操作參數(shù)和條件判斷膜的性能,并且與在各領(lǐng)域的商業(yè)膜進行比較。通過水吸收、線性膨脹比、離子交換容量、化學(xué)穩(wěn)定性、堿穩(wěn)定性、熱穩(wěn)定性和陰離子交換膜的機械穩(wěn)定性來判斷膜的物理和電化學(xué)性質(zhì)。本文還考察了參數(shù)模型、多價絡(luò)合效應(yīng)以及操作參數(shù)等因素對擴散透析過程的影響情況。本論文設(shè)計合成了一種新型陰離子交換膜(QUDAP AEMs),并通過擴散透析進行酸回收,并通過掃描電子顯微鏡(SEM)、傅立葉變換紅外(FTIR)、動態(tài)力學(xué)分析(DMA)和熱重分析(TGA)來進行表征。與商用膜DF-120相比,制備所得的AEM具有良好的質(zhì)子透析系數(shù)和分離因子。此外,文中還提出了工藝參數(shù)模型,根據(jù)擴散系數(shù)和進料量的變化來預(yù)測通過擴散透析的酸回收性能。將實驗結(jié)果與模型預(yù)測結(jié)果進行比較,結(jié)果表明所開發(fā)的模型與實驗結(jié)果具有...
【文章來源】:中國科學(xué)技術(shù)大學(xué)安徽省 211工程院校 985工程院校
【文章頁數(shù)】:181 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction and Background
1.1 General Description
1.2. Fundamental Concept of Ion Exchange Membrane
1.3. Anion Exchange Membrane
1.3.1. Anion Exchange Membranes with New Cationic Head Groups
1.3.2. Anion Exchange Membranes with New Polymer Architecture
1.4. Application of Anion Exchange Membranes
1.4.1. Diffusion Dialysis (DD)
1.4.1.1. Fundamental Concept of Diffusion Dialysis
1.4.1.2. Models for Diffusion Dialysis
1.4.1.3. Experimental Setups for Diffusion Dialysis
1.4.2. Electrodialysis
1.4.2.1. Basic Principles of Electrodialysis
1.4.2.2. Models and Experimental Setups for Electrodialysis Proces
1.4.3. Anion Exchange Membrane Fuel Cell
1.4.3.1. The Principles of the Anion Exchange Membrane as Polymer Electrolyte
1.4.3.2. Desired Properties of AEMFCs
1.4.3.3. Transport Mechanism in AEMFCs
1.4.4. The other Applications of Anion Exchange Membrane
1.5. Scope and Objective of the Thesis
Chapter 2 Experimental and Characterization
2.1. Materials and Reagents
2.2. General Methods of Membranes Preparation
2.3. Characterizations and Methods
2.3.1. Polymer Characterization
2.3.2. Water Uptake (WU)
2.3.3. Static Water Contact Angle (WCA)
2.3.4. Mechanical and Thermal Analysis
2.3.5. Fluorescein Isothiocyanate Analysis (FITC)
2.3.6. Scanning Electron Microscopy (SEM)
2.3.7. Atomic Force Microscopy (AFM)
2.3.8. Ion Exchange Capacity (IEC)
2.3.9. Linear Swelling Ratio (LER)
2.3.10. Fixed Charge Concentration
2.3.11. Transport Number
2.3.12. Current-Voltage Curve
2.3.13. Membrane Area Resistance and Limiting Current Density
2.3.14. Chemical Stability and Alkaline Stability
2.3.15. Experimental and Full Factorial Design
2.3.16. Activation Energy
2.3.17. Diffusion Dialysis
2.3.18. Electrodialysis
2.3.19. Hydroxide Conductivity
2.3.20. Methanol Permeability
Chapter 3 PVA-QUDAP based anion exchange membranes for diffusion dialysis
3.1. Introduction
3.2. Experimental
3.2.1. Synthesis of 2-Dimethylamino Methyl pyridine
3.2.2. Synthesis of QUDAP
3.2.3 Fabrication of the QUDAP/PVA Membrane
3.3. Results and Discussion
3.3.1. Fourier Transform Infrared Spectroscopy
3.3.2. Ion Exchange Capacity and Water Uptake
3.3.3. Membrane Morphology
3.3.4. Mechanical Stability
3.3.5. Thermal Stability
3.3.6. Diffusion Dialysis Results
3.3.7. Theoretical Analysis in Diffusion Dialysis
3.4. Conclusion
Chapter 4 Augmenting acid recovery from different systems by novel Q-DAN anionexchange membranes via diffusion dialysis
4.1. Introduction
4.2. Experimental
4.2.1. Synthesis of Quaternized DAN
4.2.2. Membrane preparation
4.3. Results and Discussion
4.3.1. Structural and Morphological Characterizations of Q-DAN AEMs
4.3.2. Water Uptake and Ion Exchange Capacity (IEC)
4.3.3. Thermal and Mechanical Stabilities
4.3.4. Diffusion Dialysis Process
4.3.4.1. HCl and FeCl_2 System
4.3.4.2. Representative Multivalent Metal ions-HCl Systems
4.4. Conclusion
Chapter 5 Investigation of key process parameters in acid recovery for diffusion dialysisusing novel (MDMH-QPPO) anion exchange membranes
5.1. Introduction
5.2. Experimental
5.2.1. Synthesis of Methyl 6-(dimethylamino) Hexanoate
5.2.2. Synthesis of Methyl 6-(dimethylamino) Hexanoate
5.2.3. Membrane Preparation
5.2.4. Plan of Experiments
5.3. Results and Discussion
5.3.1. ~1H NMR Analysis
5.3.2. FTIR Analysis for Membrane Structure
5.3.3. Morphologies of MDMH-QPPO AEMs
5.3.4. Ion Exchange Capacity (IEC), Water Uptake (WU) and Swelling Ratio (LER)
5.3.5. Membrane Mechanical and Thermal Stabilities
5.3.6. Diffusion Dialysis Performance
5.3.7. Investigation of Dominant Factors Order in Diffusion Dialysis
5.4. Conclusion
Chapter 6 Anion exchange membranes with hydrophobic chains for monovalent-divalentseparation in electrodialysis
6.1. Introduction
6.2. Experimental
6.2.1. Synthesis of 2-(N,N-Dimethylamino) Methylpyridine
6.2.2. Synthesis of QPP, QHP, and QUP
6.2.3. Membrane Preparation
6.3. Results and Discussion
6.3.1. NMR Analysis
6.3.2. IEC, WU, and LSR
6.3.3. Mechanical Strength
6.3.4. SEM and AFM Morphology
6.3.5. Transport Number
6.3.6. Current-Voltage Curve
6.3.7. Mono/Multi-valent Anion Selectivity
6.3.7.1. Effect of IEC on Selectivity
6.3.7.2. Effect of Hydrophobic Side Chains on Selectivity
6.3.7.3. Operational Stability
6.4. Conclusion
Chapter 7 Alkaline stable anion exchange membranes for fuel cells
7.1. Introduction
7.2. Experimental
7.2.1. Synthesis of Dipicolylamine
7.2.2. Synthesis of N-methyl Dipicolylamine (MDPA)
7.2.3. Membrane Fabrication
7.3. Results and Discussion
7.3.1. ~1H NMR, FTIR Analysis for Membrane Structure
7.3.2. Electrochemical properties relationship
7.3.3. Morphology
7.3.4. Mechanical behavior
7.3.5. Thermal behavior
7.3.6. Alkaline stability
7.3.7. Hydroxide conductivity and activation energy
7.3.8. Methanol permeability
7.4. Conclusion
Chapter 8 Overall Conclusion and Future Perspectives
8.1. Overall Conclusion
8.2. Future Perspectives
References
Acknowledgement
List of Publications
本文編號:3578592
【文章來源】:中國科學(xué)技術(shù)大學(xué)安徽省 211工程院校 985工程院校
【文章頁數(shù)】:181 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction and Background
1.1 General Description
1.2. Fundamental Concept of Ion Exchange Membrane
1.3. Anion Exchange Membrane
1.3.1. Anion Exchange Membranes with New Cationic Head Groups
1.3.2. Anion Exchange Membranes with New Polymer Architecture
1.4. Application of Anion Exchange Membranes
1.4.1. Diffusion Dialysis (DD)
1.4.1.1. Fundamental Concept of Diffusion Dialysis
1.4.1.2. Models for Diffusion Dialysis
1.4.1.3. Experimental Setups for Diffusion Dialysis
1.4.2. Electrodialysis
1.4.2.1. Basic Principles of Electrodialysis
1.4.2.2. Models and Experimental Setups for Electrodialysis Proces
1.4.3. Anion Exchange Membrane Fuel Cell
1.4.3.1. The Principles of the Anion Exchange Membrane as Polymer Electrolyte
1.4.3.2. Desired Properties of AEMFCs
1.4.3.3. Transport Mechanism in AEMFCs
1.4.4. The other Applications of Anion Exchange Membrane
1.5. Scope and Objective of the Thesis
Chapter 2 Experimental and Characterization
2.1. Materials and Reagents
2.2. General Methods of Membranes Preparation
2.3. Characterizations and Methods
2.3.1. Polymer Characterization
2.3.2. Water Uptake (WU)
2.3.3. Static Water Contact Angle (WCA)
2.3.4. Mechanical and Thermal Analysis
2.3.5. Fluorescein Isothiocyanate Analysis (FITC)
2.3.6. Scanning Electron Microscopy (SEM)
2.3.7. Atomic Force Microscopy (AFM)
2.3.8. Ion Exchange Capacity (IEC)
2.3.9. Linear Swelling Ratio (LER)
2.3.10. Fixed Charge Concentration
2.3.11. Transport Number
2.3.12. Current-Voltage Curve
2.3.13. Membrane Area Resistance and Limiting Current Density
2.3.14. Chemical Stability and Alkaline Stability
2.3.15. Experimental and Full Factorial Design
2.3.16. Activation Energy
2.3.17. Diffusion Dialysis
2.3.18. Electrodialysis
2.3.19. Hydroxide Conductivity
2.3.20. Methanol Permeability
Chapter 3 PVA-QUDAP based anion exchange membranes for diffusion dialysis
3.1. Introduction
3.2. Experimental
3.2.1. Synthesis of 2-Dimethylamino Methyl pyridine
3.2.2. Synthesis of QUDAP
3.2.3 Fabrication of the QUDAP/PVA Membrane
3.3. Results and Discussion
3.3.1. Fourier Transform Infrared Spectroscopy
3.3.2. Ion Exchange Capacity and Water Uptake
3.3.3. Membrane Morphology
3.3.4. Mechanical Stability
3.3.5. Thermal Stability
3.3.6. Diffusion Dialysis Results
3.3.7. Theoretical Analysis in Diffusion Dialysis
3.4. Conclusion
Chapter 4 Augmenting acid recovery from different systems by novel Q-DAN anionexchange membranes via diffusion dialysis
4.1. Introduction
4.2. Experimental
4.2.1. Synthesis of Quaternized DAN
4.2.2. Membrane preparation
4.3. Results and Discussion
4.3.1. Structural and Morphological Characterizations of Q-DAN AEMs
4.3.2. Water Uptake and Ion Exchange Capacity (IEC)
4.3.3. Thermal and Mechanical Stabilities
4.3.4. Diffusion Dialysis Process
4.3.4.1. HCl and FeCl_2 System
4.3.4.2. Representative Multivalent Metal ions-HCl Systems
4.4. Conclusion
Chapter 5 Investigation of key process parameters in acid recovery for diffusion dialysisusing novel (MDMH-QPPO) anion exchange membranes
5.1. Introduction
5.2. Experimental
5.2.1. Synthesis of Methyl 6-(dimethylamino) Hexanoate
5.2.2. Synthesis of Methyl 6-(dimethylamino) Hexanoate
5.2.3. Membrane Preparation
5.2.4. Plan of Experiments
5.3. Results and Discussion
5.3.1. ~1H NMR Analysis
5.3.2. FTIR Analysis for Membrane Structure
5.3.3. Morphologies of MDMH-QPPO AEMs
5.3.4. Ion Exchange Capacity (IEC), Water Uptake (WU) and Swelling Ratio (LER)
5.3.5. Membrane Mechanical and Thermal Stabilities
5.3.6. Diffusion Dialysis Performance
5.3.7. Investigation of Dominant Factors Order in Diffusion Dialysis
5.4. Conclusion
Chapter 6 Anion exchange membranes with hydrophobic chains for monovalent-divalentseparation in electrodialysis
6.1. Introduction
6.2. Experimental
6.2.1. Synthesis of 2-(N,N-Dimethylamino) Methylpyridine
6.2.2. Synthesis of QPP, QHP, and QUP
6.2.3. Membrane Preparation
6.3. Results and Discussion
6.3.1. NMR Analysis
6.3.2. IEC, WU, and LSR
6.3.3. Mechanical Strength
6.3.4. SEM and AFM Morphology
6.3.5. Transport Number
6.3.6. Current-Voltage Curve
6.3.7. Mono/Multi-valent Anion Selectivity
6.3.7.1. Effect of IEC on Selectivity
6.3.7.2. Effect of Hydrophobic Side Chains on Selectivity
6.3.7.3. Operational Stability
6.4. Conclusion
Chapter 7 Alkaline stable anion exchange membranes for fuel cells
7.1. Introduction
7.2. Experimental
7.2.1. Synthesis of Dipicolylamine
7.2.2. Synthesis of N-methyl Dipicolylamine (MDPA)
7.2.3. Membrane Fabrication
7.3. Results and Discussion
7.3.1. ~1H NMR, FTIR Analysis for Membrane Structure
7.3.2. Electrochemical properties relationship
7.3.3. Morphology
7.3.4. Mechanical behavior
7.3.5. Thermal behavior
7.3.6. Alkaline stability
7.3.7. Hydroxide conductivity and activation energy
7.3.8. Methanol permeability
7.4. Conclusion
Chapter 8 Overall Conclusion and Future Perspectives
8.1. Overall Conclusion
8.2. Future Perspectives
References
Acknowledgement
List of Publications
本文編號:3578592
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/3578592.html
最近更新
教材專著