天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電氣論文 >

面向大數(shù)據(jù)的電力市場(chǎng)分析預(yù)測(cè)系統(tǒng)設(shè)計(jì)與應(yīng)用

發(fā)布時(shí)間:2019-03-07 22:15
【摘要】:隨著電力市場(chǎng)改革在我國(guó)的不斷深入,電力行業(yè)在快速發(fā)展的同時(shí),也遇到了新的困難。電力市場(chǎng)改革之后,電力系統(tǒng)中各個(gè)市場(chǎng)成員成為了不同的利益主體,經(jīng)濟(jì)性被提到了和安全性同樣重要的地位。如何盡可能地實(shí)現(xiàn)電力系統(tǒng)運(yùn)行的經(jīng)濟(jì)優(yōu)化?除了在市場(chǎng)規(guī)則方面制定相應(yīng)的措施外,可以考慮通過(guò)向各個(gè)市場(chǎng)成員提供一些關(guān)于市場(chǎng)狀況的預(yù)測(cè)信息,以使整個(gè)電力市場(chǎng)安全、穩(wěn)定、平穩(wěn)的運(yùn)行,減少由于對(duì)未來(lái)市場(chǎng)狀況準(zhǔn)備不足所帶來(lái)的對(duì)系統(tǒng)正常運(yùn)行的沖擊,同時(shí),也方便各個(gè)市場(chǎng)成員合理地決策,謀取利益最大化。本文通過(guò)大數(shù)據(jù)在電力市場(chǎng)預(yù)測(cè)和分析中的應(yīng)用研究,為電力市場(chǎng)預(yù)測(cè)提供建模指導(dǎo),出具預(yù)測(cè)趨勢(shì)計(jì)算模型,分析預(yù)測(cè)期內(nèi)需電量、負(fù)荷及負(fù)荷特性和公司售電量等相關(guān)指標(biāo)預(yù)測(cè)信息,加強(qiáng)規(guī)劃,運(yùn)行,營(yíng)銷的信息共享,減少因重復(fù)建設(shè)造成的成本投入,減少專業(yè)部門工作量,有效提升電力市場(chǎng)預(yù)測(cè)數(shù)據(jù)處理的及時(shí)性、可靠性和準(zhǔn)確性,提高數(shù)據(jù)的使用價(jià)值,為公司領(lǐng)導(dǎo)層和管理層提供更準(zhǔn)確的預(yù)測(cè)支撐數(shù)據(jù),促進(jìn)企業(yè)業(yè)務(wù)運(yùn)作效率的提升,提高電力企業(yè)服務(wù)社會(huì)的工作效率。本文主要從兩個(gè)方面進(jìn)行了相關(guān)理論方法的創(chuàng)新研究。首先,文章提出了以電力大數(shù)據(jù)平臺(tái)為基礎(chǔ)構(gòu)建電力市場(chǎng)分析預(yù)測(cè)系統(tǒng),采用以Hadoop為核心的數(shù)據(jù)采集、分布式存儲(chǔ)、分布式處理等大數(shù)據(jù)生態(tài)系統(tǒng)技術(shù),實(shí)現(xiàn)數(shù)據(jù)資源的集中管理、實(shí)時(shí)監(jiān)測(cè)和可視化管理。其次,本文選取了基于溫度變化的居民用電消費(fèi)習(xí)慣主題作為典型數(shù)據(jù)挖掘應(yīng)用,實(shí)現(xiàn)日最高負(fù)荷與溫度的關(guān)聯(lián)分析、居民日均用電量與溫度的關(guān)聯(lián)分析,掌握負(fù)荷隨著溫度變化的趨勢(shì)以及城市和農(nóng)村地區(qū)基于溫度變化的用電量差異,為有序用電決策和措施提供輔助分析。
[Abstract]:With the deepening of the reform of power market in China, the electric power industry has encountered new difficulties as well as its rapid development. After the reform of the electricity market, the members of the power market have become different stakeholders, and the economy has been mentioned as important as the security. How to realize the economic optimization of power system operation as far as possible? In addition to establishing appropriate measures with regard to market rules, consideration could be given to providing market members with some forecasting information on market conditions in order to ensure the safe, stable and smooth operation of the entire electricity market, It can reduce the impact on the normal operation of the system caused by the lack of preparation for future market conditions, and at the same time, it is convenient for each member of the market to make reasonable decisions and maximize the profits. Through the research of big data's application in forecasting and analysis of electricity market, this paper provides the guidance of modeling for the forecast of electricity market, presents the calculation model of forecasting trend, and analyzes the quantity of electricity demand in the forecast period. Load and load characteristics and the company's electricity sales and other related indicators forecast information, strengthen planning, operation, marketing information sharing, reduce the cost of repeated construction input, reduce the workload of professional departments. Effectively improve the timeliness, reliability and accuracy of forecast data processing in the electricity market, improve the value of data use, provide more accurate prediction support data for the company's leadership and management, and promote the efficiency of business operations. Improve the efficiency of electric power enterprises to serve the society. This article mainly carries on the innovation research of the related theories and methods from two aspects. First of all, this paper puts forward the construction of electricity market analysis and prediction system based on power big data platform, adopting big data ecosystem technology, such as data collection, distributed storage, distributed processing and so on, which is based on Hadoop. Realize the centralized management of data resources, real-time monitoring and visual management. Secondly, the topic of household consumption habits based on temperature change is selected as a typical data mining application to realize the correlation analysis between daily maximum load and temperature, and the correlation analysis between daily average electricity consumption and temperature. The trend of load changing with temperature and the difference of electricity consumption based on temperature change in urban and rural areas are grasped, which can provide auxiliary analysis for orderly decision-making and measures of power consumption.
【學(xué)位授予單位】:華北電力大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP311.13;F426.61

【引證文獻(xiàn)】

相關(guān)碩士學(xué)位論文 前1條

1 龔澤威一;基于機(jī)器學(xué)習(xí)的居民用電行為分析[D];昆明理工大學(xué);2018年



本文編號(hào):2436503

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2436503.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶5defa***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com