天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

Sn基復(fù)合納米碳纖維制備及其儲能功能研究

發(fā)布時間:2018-11-10 19:00
【摘要】:新型功能纖維的開發(fā)及推廣應(yīng)用,開拓出染整功能研究領(lǐng)域的新空間,使染整工藝技術(shù)不再局限于日常服用功能。隨著消費類鋰離子電池的不斷推陳出新,染整功能整理技術(shù)應(yīng)用于儲能功能纖維的制備設(shè)計正迎合了市場需求。據(jù)此,本文以染整工藝技術(shù)拓展新思路為引導(dǎo),以紡織纖維能量轉(zhuǎn)化與儲存應(yīng)用為切入點,結(jié)合錫(Sn)基材料的儲能特性和納米碳纖維(CNFs)的高導(dǎo)電性,賦予Sn基復(fù)合納米碳纖維儲能功能。針對Sn基材料體積效應(yīng),通過內(nèi)部改性及外部保護兩種方式,分別對Sn基復(fù)合納米碳纖維的成分、形貌和結(jié)構(gòu)進行設(shè)計,以提高循環(huán)性能。通過分析不同方法制備的Sn基復(fù)合納米碳纖維成分、結(jié)構(gòu)和儲能功能之間的關(guān)系,探討其儲能機理。第一章首先介紹了鋰離子電池的研究背景及工作原理,而后簡要闡述了負極材料類型及特點,隨后著重論述了Sn基負極材料的研究現(xiàn)狀和存在的問題,據(jù)此提出了本文的研究意義及工作內(nèi)容。在第二章工作中,利用Sn鹽作為單質(zhì)Sn前驅(qū)體,與PAN共混紡絲-碳化,制得Sn基復(fù)合多孔納米碳纖維(Sn-PCNFs)。金屬Sn以無定形態(tài)超均勻分散于CNFs中,部分溢出團聚成Sn基大顆粒裸露于CNFs表面。結(jié)果表明,Sn-PCNFs在0.8 A g~(-1)大電流密度下循環(huán)200次,能保持774 mA h g~(-1)的高比容量;由于裸露的Sn基大顆粒易在充放電過程中破碎脫落而失去活性,因此Sn-PCNFs的循環(huán)壽命及穩(wěn)定性有待提高。在第三章工作中,以利用第二章裸露的Sn基大顆粒為出發(fā)點,利用Sn和Cu的前驅(qū)體與PAN發(fā)生絡(luò)合反應(yīng)高度分散Sn-Cu前驅(qū)體,采用碳化-合金化一步法制得Sn-Cu合金與CNFs基體(Sn-Cu-CNFs),控制溫度為700oC可使惰性Cu3Sn和活性Cu6Sn5共存于Sn基大顆粒中,顯著提升Sn基復(fù)合納米碳纖維的循環(huán)性能。結(jié)果表明,Sn-Cu-CNFs在1.0 A g~(-1)大電流密度下,可循環(huán)1200次,比容量保持400 mA h g~(-1),庫倫效率為99%;對比Sn-PCNFs,循環(huán)壽命大幅提升。在第四章工作中,以保護第二章裸露的Sn基大顆粒為思路,以廉價的蔗糖為碳源,采用低溫水熱法進行碳包覆保護,制得碳包覆Sn基復(fù)合納米碳纖維(Sn-SnO_2-CNF@C),控制蔗糖濃度可獲得均勻包覆的碳層結(jié)構(gòu)。電化學(xué)測試結(jié)果表明,Sn-SnO_2-CNF@C2在電流密度為0.8 A g~(-1)下循環(huán)200次,容量保持712.2 mA h g~(-1);對比Sn-PCNFs,Sn-SnO_2-CNF@C2具有更好的循環(huán)穩(wěn)定性和倍率性能。在第五章工作中,首次利用準(zhǔn)分子紫外光輻照技術(shù)微氧化改性納米碳纖維(UV20-CNFs)和Sn基納米碳纖維(UV20-Sn-CNFs),使纖維表面產(chǎn)生含氧官能團,不僅有利于提高反應(yīng)動力學(xué),而且使循環(huán)過程中形成的固體電解質(zhì)界面(SEI)膜穩(wěn)定錨固在纖維上,提高循環(huán)穩(wěn)定性;同時在纖維表面形成多孔結(jié)構(gòu),增加物理儲鋰量。結(jié)果表明,UV20-Sn-CNFs在0.5 A g~(-1)的電流密度下循環(huán)200次,放電比容量為733 mA h g~(-1),庫倫效率達99%;UV20-CNFs在2.0 A g~(-1)的大電流密度下,循環(huán)次數(shù)可達1000次,且比容量保持300 mA h g~(-1),庫倫效率為98%;準(zhǔn)分子紫外光微氧化技術(shù)簡單易行,具有潛在商業(yè)前景。最后,在第六章中,系統(tǒng)總結(jié)了本論文的研究結(jié)果,指出研究工作中存在的不足,并提出未來的發(fā)展方向及建議。
[Abstract]:The new functional fiber is developed and applied, and the new space in the research field of dyeing and finishing function is developed, so that the dyeing and finishing technology is no longer limited to the daily administration function. With the continuous development of the consumer Li-ion battery, the technology of dyeing and finishing function finishing technology is applied to the preparation and design of the energy-storage functional fiber, and the market demand is being met. In this paper, based on the development of the new thought of dyeing and finishing technology, the energy storage of Sn-based composite nano-carbon fiber is given by combining the energy storage characteristics of the tin (Sn)-based material and the high electrical conductivity of the nano-carbon fiber (CNFs). The composition, morphology and structure of the Sn-based composite nano-carbon fiber were designed by internal modification and external protection for the volume effect of the Sn-based material, so as to improve the cycle performance. The relationship between the composition, structure and energy storage function of Sn-based composite nano-carbon fiber prepared by different methods was analyzed, and its energy storage mechanism was discussed. In the first chapter, the research background and working principle of the Li-ion battery are introduced in the first chapter, then the types and characteristics of the negative materials are briefly described, and then the research status and the existing problems of the Sn-based negative material are emphatically discussed, and the research significance and the working contents of this paper are put forward. In the second chapter, Sn-based composite porous nano-carbon fiber (Sn-PCNFs) was prepared by using Sn salt as the precursor of simple substance Sn and blending with PAN. The metal Sn is superuniformly dispersed in CNFs in a non-constant form, and the partial overflow is agglomerated into Sn-based large particles and exposed on the surface of the CNFs. The results show that the cycle life and stability of Sn-PCNFs need to be improved because the Sn-PCNFs are cycled 200 times under a large current density of 0.8 A g ~ (-1), and the high specific capacity of 774 mA h g ~ (-1) can be maintained. In the third chapter, the Sn-Cu precursor and the CNFs matrix (Sn-Cu-CNFs) were prepared by a step of carbonization-alloying by using the second exposed Sn-based large particles as the starting point, using the precursor of Sn and Cu and the complex reaction of the PAN to disperse the Sn-Cu precursor. The control temperature is 700oC, so that the inert Cu3Sn and the active Cu6Sn5 can coexist in the Sn-based large particles, and the cycle performance of the Sn-based composite nano carbon fiber is remarkably improved. The results show that Sn-Cu-CNFs can be cycled for 1200 times at a large current density of 1. 0 A g ~ (-1), with a specific capacity of 400 mA h g ~ (-1), and the coulomb efficiency is 99%. Compared with Sn-PCNFs, the cycle life of Sn-Cu-CNFs is greatly improved. In chapter 4, in order to protect the exposed Sn-based large particles of the second chapter, the carbon-coated Sn-based composite nano-carbon fiber (Sn-SnO_2-CNF@C) was prepared by using the low-temperature water heat method as the carbon source, and the carbon-coated carbon layer structure can be obtained by controlling the concentration of the sucrose. The results of the electrochemical test show that the Sn-SnO_2-CNF@C2 is 200 times under the current density of 0.8 A g ~ (-1), the capacity is 71.2 mA h g ~ (-1), and compared with the Sn-PCNFs, the Sn-SnO_2-CNF@C2 has better cycle stability and multiplying power performance. In the fifth chapter, the nano-carbon fiber (UV20-CNFs) and the Sn-based nano-carbon fiber (UV20-Sn-CNFs) were micro-oxidized by excimer UV irradiation, so that the oxygen-containing functional group was generated on the surface of the fiber, which not only is beneficial to the improvement of the reaction kinetics, and the solid electrolyte interface (SEI) film formed in the circulation process is stably anchored on the fiber, and the cycle stability is improved; meanwhile, the porous structure is formed on the surface of the fiber, and the physical lithium storage amount is increased. The results show that the discharge ratio of UV20-Sn-CNFs is 200 times under the current density of 0.5 A g ~ (-1), the discharge specific capacity is 733 mA h g ~ (-1), the coulomb efficiency is 99%, the number of cycles can be up to 1000 times under the large current density of 2.0 A g ~ (-1), and the capacity of the UV20-CNFs is 300 mA h g ~ (-1), and the coulomb efficiency is 98%. The excimer ultraviolet micro-oxidation technology is simple and feasible, and has potential commercial prospect. Finally, in the sixth chapter, the system summarizes the research results of this paper, points out the deficiency in the research work, and puts forward the future development direction and suggestion.
【學(xué)位授予單位】:浙江理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM912

【相似文獻】

相關(guān)期刊論文 前10條

1 曹何芬;新加坡在世界上首次合成納米碳墻[J];建設(shè)科技;2002年03期

2 蒲天游;納米碳對酚醛樹脂碳微結(jié)構(gòu)的影響[J];現(xiàn)代科學(xué)儀器;2003年03期

3 衛(wèi)英慧;侯利鋒;林麗霞;劉雯;許并社;市野瀨英喜;;納米碳洋蔥的研究進展[J];兵器材料科學(xué)與工程;2007年06期

4 楊晶;史立飛;王禹;羅文滿;李庚英;熊光晶;;分散劑對納米碳黑水泥砂漿性能的影響[J];新型建筑材料;2012年01期

5 馬柯;崔曉鈺;鄧高飛;;納米碳球涂料對散熱器散熱性能的影響[J];熱科學(xué)與技術(shù);2013年03期

6 鄧文,鐘夏平,熊良鉞,劉起秀,,龍期威;納米碳中的微觀缺陷結(jié)構(gòu)特征[J];核技術(shù);1998年02期

7 韓德艷;謝長生;;納米碳包鐵的吸附性能研究[J];黃石理工學(xué)院學(xué)報;2006年03期

8 楊薇炯;納米碳基膜場發(fā)射顯示技術(shù)的研究進展[J];新材料產(chǎn)業(yè);2005年09期

9 楊學(xué)軍,丘哲明,胡良全;納米碳黑對酚醛樹脂力學(xué)性能的影響[J];宇航材料工藝;2003年04期

10 邵建人;納米碳防腐導(dǎo)電涂料問世[J];內(nèi)蒙古電力技術(shù);2003年05期

相關(guān)會議論文 前10條

1 孔春才;孫少東;楊志懋;;水下電弧法制備納米碳片[A];第七屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集(第3分冊)[C];2010年

2 薛靖華;韓敏芳;王增峰;;白云石制備納米碳酸鈣和納米碳酸鎂概述[A];第八屆全國非金屬礦加工利用技術(shù)交流會論文專輯[C];2004年

3 郭巍;安勝利;;納米碳催化劑對鋁碳耐火材料抗氧化性能的影響[A];第二屆全國背散射電子衍射(EBSD)技術(shù)及其應(yīng)用學(xué)術(shù)會議暨第六屆全國材料科學(xué)與圖像科技學(xué)術(shù)會議論文集[C];2007年

4 郁軍;許并社;楊永珍;張艷;劉旭光;;熱處理脫油瀝青制備內(nèi)包金屬納米碳洋蔥[A];第九次全國熱處理大會論文集(二)[C];2007年

5 陳名海;陳宏源;靳瑜;邢亞娟;田靖;勇振中;李清文;;功能納米碳紙結(jié)構(gòu)性能調(diào)制及其應(yīng)用[A];中國化學(xué)會第28屆學(xué)術(shù)年會第4分會場摘要集[C];2012年

6 吳翔;劉廣安;孟國軍;;納米碳電學(xué)性能研究及其在電發(fā)熱膜中的應(yīng)用[A];2004年中國納米技術(shù)應(yīng)用研討會論文集[C];2004年

7 程若川;;納米碳示蹤在甲狀腺手術(shù)中的應(yīng)用[A];2014第六屆全國甲狀腺腫瘤學(xué)術(shù)大會論文集[C];2014年

8 李紅霞;李曉明;楊澤垠;陳旭珍;陳坤;;甲狀腺手術(shù)中應(yīng)用納米碳的益處[A];2014第六屆全國甲狀腺腫瘤學(xué)術(shù)大會論文集[C];2014年

9 胡良全;張煒;盧嘉德;;納米碳增強碳/酚醛材料的微觀結(jié)構(gòu)研究[A];復(fù)合材料:生命、環(huán)境與高技術(shù)——第十二屆全國復(fù)合材料學(xué)術(shù)會議論文集[C];2002年

10 魏先文;徐靜;宋小杰;;納米碳管基復(fù)合材料的合成及性能研究[A];科技、工程與經(jīng)濟社會協(xié)調(diào)發(fā)展——中國科協(xié)第五屆青年學(xué)術(shù)年會論文集[C];2004年

相關(guān)重要報紙文章 前8條

1 楊彥飛 王曉霞;潞城建成全國最大納米碳生產(chǎn)示范基地[N];山西日報;2012年

2 李斌 王曉霞;潞城建成納米碳生產(chǎn)示范基地[N];長治日報;2012年

3 本報記者 原臘苗;用高科技開辟化肥全新領(lǐng)域[N];長治日報;2011年

4 ;納米碳防腐導(dǎo)電涂料項目通過鑒定[N];中國高新技術(shù)產(chǎn)業(yè)導(dǎo)報;2005年

5 邵建人;納米碳防腐導(dǎo)電涂料問世[N];中國化工報;2003年

6 通訊員 黃敬華 熊晶晶;襄樊東一公司納米碳液通過鑒定[N];科技日報;2002年

7 記者 張海霞;加大推廣研發(fā)力度把企業(yè)做強做大[N];長治日報;2012年

8 本報記者 閆婷婷;晟龍公司碳光玻璃引領(lǐng)行業(yè)發(fā)展潮流[N];長治日報;2013年

相關(guān)博士學(xué)位論文 前6條

1 鄧建輝;熒光納米碳點的電化學(xué)制備及其在生化分析中的應(yīng)用[D];湖南師范大學(xué);2015年

2 薛芳沁;納米碳淋巴示蹤劑在胃腸腫瘤手術(shù)中的應(yīng)用研究[D];南方醫(yī)科大學(xué);2016年

3 孔華庭;納米碳黑—金屬復(fù)合物的聯(lián)合呼吸毒性研究[D];中國科學(xué)院研究生院(上海應(yīng)用物理研究所);2017年

4 徐海濤;微納米碳鐵復(fù)合材料的制備與表征[D];中國科學(xué)院研究生院(理化技術(shù)研究所);2009年

5 李軍章;納米碳酸鹽的制備及其化學(xué)反應(yīng)行為的研究[D];河北工業(yè)大學(xué);2013年

6 榮常如;聚芳醚/納米碳復(fù)合材料的制備及性能研究[D];吉林大學(xué);2010年

相關(guān)碩士學(xué)位論文 前10條

1 付凱;術(shù)中不同方法保護甲狀旁腺的比較及臨床意義[D];河北醫(yī)科大學(xué);2015年

2 張維國;稠環(huán)芳烴分子結(jié)構(gòu)對其碳化產(chǎn)物結(jié)構(gòu)的影響[D];北京化工大學(xué);2015年

3 蔣合林;納米碳/金屬氧化(氫氧化)物復(fù)合材料的制備及其儲能性能研究[D];北京化工大學(xué);2015年

4 鄭笑晨;基于納米碳點復(fù)合材料化學(xué)修飾電極的制備及應(yīng)用[D];延安大學(xué);2015年

5 韓曉光;不同尿素添加納米碳對大豆生長、氮素吸收及產(chǎn)量的影響[D];東北農(nóng)業(yè)大學(xué);2015年

6 張紅來;聚合物微凝膠模板法制備納米碳結(jié)構(gòu)電極材料及電化學(xué)性能研究[D];湘潭大學(xué);2015年

7 買飛;納米碳和亞甲藍染色法在乳腺癌前哨淋巴結(jié)活檢中的臨床對比[D];大連醫(yī)科大學(xué);2015年

8 李銳;電石廢渣制備碳酸鈣的研究[D];河北科技大學(xué);2013年

9 胡文萌;納米碳化釩/鉻復(fù)合粉末的微波原位合成及機理研究[D];河南工業(yè)大學(xué);2016年

10 李瑛;納米碳材料改性斯蒂芬酸鉛的熱分析研究[D];北京理工大學(xué);2016年



本文編號:2323327

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2323327.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1abe6***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
欧美在线视频一区观看| 国产女优视频一区二区| 精品人妻一区二区三区四区久久| 九七人妻一区二区三区| 亚洲欧美视频欧美视频| 99视频精品免费视频| 亚洲伦片免费偷拍一区| 国产成人免费激情视频| 夫妻性生活黄色录像视频| 国产亚洲欧美自拍中文自拍| 亚洲av熟女国产一区二区三区站| 欧美成人黄色一级视频| 成人欧美精品一区二区三区| 精品老司机视频在线观看| 国产精品香蕉一级免费| 爽到高潮嗷嗷叫之在现观看| 观看日韩精品在线视频| 国内自拍偷拍福利视频| 日本不卡一区视频欧美| 欧美韩国日本精品在线| 精品人妻久久一品二品三品| 日系韩系还是欧美久久| 久久一区内射污污内射亚洲| 亚洲一区二区欧美激情| 黄片在线观看一区二区三区| 欧美日韩精品一区免费| 一区二区三区亚洲天堂| 国产亚洲不卡一区二区| 欧美精品久久男人的天堂| 深夜少妇一区二区三区| 一区二区三区日韩中文| 中文字幕91在线观看| 五月婷婷亚洲综合一区| 日韩精品人妻少妇一区二区| 欧美日韩乱一区二区三区| 日本少妇三级三级三级| 国产乱久久亚洲国产精品| 日本高清中文精品在线不卡| 国产免费一区二区三区av大片| 欧美午夜一级艳片免费看| 深夜福利亚洲高清性感|